Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Стандарт IEEE 754
Рекомендуемый для всех ВМ формат представления чисел с плавающей запятой определен стандартом IEEE 754. Этот стандарт был разработан с целью облегчить перенос программ с одного процессора на другие и нашел широкое применение практически во всех процессорах и арифметических сопроцессорах. Рис. 2.24. Основные форматы IEEE 754: а — одинарный; б — двойной Стандарт определяет 32-битовый (одинарный) и 64-битовый (двойной) форматы (рис. 2.24) с 8- и 11-разрядным порядком соответственно. Самый левый бит хранит знак числа. Основанием системы счисления является 2. Смещение равно соответственно 127 и 1023. Максимальный порядок, который может иметь число: 127 и 1023. Для повышения точности представления мантиссы используют прием скрытой единицы: поскольку в нормализованной мантиссе старшая цифра всегда равна 1, ее можно не хранить. Следовательно, при 4-хбайтовом представлении, мантисса фактически состоит из 24 разрядов. Скрытая единица при выполнении арифметических операций восстанавливается, а при записи результата удаляется.
Пример: рассмотрим 4-хбайтовый код числа 20.5: 20.5 = 10100.12 = 0.101001 * 25 Порядок (смещенный): 5+127 = 132 = 1000 01002 Мантисса: 101001 à 010010…0 (первая единица – скрытая, в конец мантиссы добавляются нули).
4-хбайтовое представление:
порядок мантисса
В 16-ом виде этот код будет выглядеть так: 42240000.
Определим максимальное число и его точность при 4-хбайтовом представлении. Максимальное число: .1…1 * 2127 = 1 * 2127 = 1.7 * 1038 Максимальное значение мантиссы: 1…1 (24 единицы) = 224 – 1 = 210*2.4 = 10242.4 = 1.7*107, следовательно точность представления мантиссы 7-8 значащих цифр.
|