Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Эти особенности ферментов, как биологических катализаторов, иногда называют общими свойствами ферментов. К ним относится следующее.






  1. Высокая эффективность действия. Ферменты могут ускорять реакцию в 108-1012 раз.
  2. Высокая избирательность ферментов к субстратам (субстратная специфичность) и к типу катализируемой реакции (специфичность действия).
  3. Высокая чувствительность ферментов к неспецифическим физико-химическим факторам среды - температуре, рН, ионной силе раствора и т.д.
  4. Высокая чувствительность к химическим реагентам.
  5. Высокая и избирательная чувствительность к физико-химическим воздействиям тех или иных химических веществ, которые благодаря этому могут взаимодействовать с ферментом, улучшая или затрудняя его работу.


12)Специфичность действия ферментов.

Субстратная специфичность, это способность фермента катализировать превращения только одного определенного субстрата или же группы сходных по строению субстратов. Определяется структурой адсорбционного участка активного центра фермента.

Различают 3 типа субстратной специфичности:

абсолютная субстратная специфичность - это способность фермента катализировать превращение только одного, строго определенного субстрата;

относительная субстратная специфичность - способность фермента катализировать превращения нескольких, сходных по строению, субстратов;

стереоспецифичность - способность фермента катализировать превращения определенных стереоизомеров.

Например, фермент оксидаза L-аминокислот способен окислять все аминокислоты, но относящиеся только к L-ряду. Таким образом, этот фермент обладает относительной субстратной специфичностью и стереоспецифичностью одновременно.

Специфичность действия - это способность фермента катализировать только определенный тип химической реакции.

В соответствии со специфичностью действия все ферменты делятся на 6 классов. Классы ферментов обозначаются латинскими цифрами. Название каждого класса ферментов соответствует этой цифре.

13)Влияние физических и химических факторов на активность ферментов.
(Температура, ph)

14)Зависимость действия ферментов от активаторов и ингибиторов.

Вещества, которые оказывают влияние на активность ферментов, называют эффекторами. Это могут быть ингибиторы – соединения, тормозящие каталитический процесс, или активаторы – вещества, которые этот процесс ускоряют. Учение об ингибиторах ферментов имеет большое теоретическое и практическое значение для фармакологии и токсикологии. Многие лекарственные препараты являются ингибиторами ферментов. Например, ингибиторы амилаз успешно применяются для лечения заболеваний, связанных с повышенной активностью этих ферментов – диабета, ожирения, кариеса. Используемые в военном деле нервно-паралитические газы представляют собой специфические ингибиторы ферментов. В научных исследованиях специфические ингибиторы используются для изучения механизма действия ферментов, строения их активного центра. Например, многие из промежуточных продуктов гликолиза и дрожжевого брожения были открыты благодаря использованию ингибиторов, блокирующих последовательные стадии процесса. В результате такого блокирования соответствующие промежуточные продукты накапливались в количествах, достаточных для их выделения и идентификации.
По типу действия ингибиторы можно разделить на обратимые и необратимые. Удаление обратимых ингибиторов из системы (диализом, гельфильтрацией и др.) восстанавливает каталитическую активность фермента.

15)Номенклатура, классификация ферментов.

Номентклатура – название строится от субстрата и от типа ускоряемой реакции.

16)Общая характеристика оксидоредуктаз.

Оксидоредукта́ зы — отдельный класс ферментов, катализирующих лежащие в основе биологического окисления реакции, сопровождающиеся переносом электронов с одной молекулы (восстановителя — акцептора протонов или донора электронов) на другую (окислитель — донора протонов или акцептора электронов). Пример: каталаза.

17)Общая характеристика гидролаз.

Гидролазы – ферменты, осуществляющие разрыв внутримолекулярных связей в субстрате (за исключением С-С связей) путем присоединения элементов Н2О, подразделяются на 13 подклассов. Ввиду сложности многих субстратов у ряда ферментов сохранены тривиальные названия, например, пепсин, трипсин. Коферменты отсутствуют.

Гидролазы широко представлены ферментами желудочно-кишечного тракта (пепсин, трипсин, липаза, амилаза и другие) и лизосомальными ферментами. Осуществляют распад макромолекул, образуя легко адсорбируемые мономеры.

18)Использование ферментов в пищевой промышленности.

На сегодняшний день в различных отраслях хозяйства применение ферментов является передовым достижением. Особое значение ферменты нашли в пищевой промышленности. Ведь именно из-за наличия ферментов в тесте происходит его поднятие и разбухание. Как известно, разбухание теста происходит под действием углекислого газа CO2, который в свою очередь образуется в результате разложения крахмала под действием фермента амилазы, которая уже содержится в муке. Но в муке этого фермента не достаточно, его, обычно, добавляют. Ещё один фермент протеазы, придающий тесту клейковину, способствует удержанию углекислого газа в тесте.

Изготовление алкогольных напитков также не обходится без участия ферментов. В этом случае широко применяются ферменты, которые находятся в дрожжах. Разнообразие сортов пива получают именно различными комбинациями комплексных соединений ферментов. Ферменты, также участвуют в растворении осадков в спиртных напитках, например, чтобы в пиве не появлялся осадок в него добавляют протеазы (папаин, пепсин), которые растворяют выпадающие в осадок белковые соединения.

Производство кисломолочных продуктов, например, простокваши, основана на химическом превращении лактозы (то есть молочного сахара) в молочную кислоту. Кефир производят подобным образом, но производственной особенностью является то, что берут не только кисломолочные бактерии, но и дрожжи. В результата переработки лактозы образуется не только молочная кислоты, но ещё и этиловый спирт. При получении кефира происходит ещё одна достаточно полезная для организма человека реакция - это гидролиз белков, что в последствии употребления человеком кефира способствует его лучшему усвоению.

Производство сыра тоже связано с ферментами. Молоко содержит белок - казеин, который в процессе химической реакции под действием протеаз изменяется, и в результате реакции выпадает в осадок.

19)Классификация витаминов, их биологическое значение и распространение в природе.

Витамины (от лат. VITA - жизнь) - группа органических соединений разнообразной химической природы, необходимых для питания человека и животных и имеющих огромное значение для нормального обмена веществ и жизнедеятельности организма Витамины выполняют в организме те или иные каталитические функции и требуются в ничтожных количествах по сравнению с основными питательными веществами (белками, жирами, углеводами и минеральными солями.). Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называться авитаминозами. Если болезнь возникает вследствие отсутствия нескольких витаминов, ее называют поливитаминозом. Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходится иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов.

Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом.

Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жирорастворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур.

КЛАССИФИКАЦИЯ ВИТАМИНОВ

По химическому строению и физико-химическим свойствам (в частности, по растворимости) витамины делят на 2 группы.

А. Водорастворимые

• Витамин В1 (тиамин);

• Витамин В2 (рибофлавин);

• Витамин РР (никотиновая кислота, никотинамид, витамин В3);

• Пантотеновая кислота (витамин В5);

• Витамин В6 (пиридоксин);

• Биотин (витамин Н);

• Фолиевая кислота (витамин Вс, В9);

• Витамин В12 (кобаламин);

• Витамин С (аскорбиновая кислота);

• Витамин Р (биофлавоноиды).

Б. Жирорастворимые

• Витамин А (ретинол);

• Витамин D (холекальциферол);

• Витамин Е (токоферол);

• Витамин К (филлохинон).

Водорастворимые витамины при их избыточном поступлении в организм, будучи хорошо растворимыми в воде, быстро выводятся из организма.

Жирорастворимые витамины хорошо растворимы в жирах и легко накапливаются в организме при их избыточном поступлении с пищей. Их накопление в организме может вызвать расстройство обиена веществ, называемое гипервитаминозом, и даже гибель организма.

20)Роль витаминов в обмене веществ и в питании человека и животных.

Витамины — группа органических соединений, необходимых для питания человека и животных. Обнаружено около 50 витаминов. Витамины — историческое название большой группы физиологически активных веществ различной химической природы, которые поступают в организм с пищей и часто представляют собой активные небелковые части ферментов — коферменты. Витамины необходимы организму в очень малых количествах, однако при их недостатке быстро развиваются болезни — авитаминозы, которые могут иметь смертельный исход. Некоторые витамины (В6, В12) могут синтезироваться бактериями, обитающими в толстом кишечнике. Витамины делятся на водорастворимые (С, В и др.) и жирорастворимые (А, Б, Е, К).Жирорастворимые витамины могут полноценно усваиваться только при нормальном всасывании жиров, поэтому у пожилых людей с ослабленной функцией печени, как правило, наблюдается их недостаток — гиповитаминоз, или даже развиваются заболевания — авитаминозы. При использовании ряда лекарств (например, антибиотиков) или при радиационном поражении микрофлора кишечника частично погибает, и выработка некоторых витаминов резко снижается. Это также приводит к развитию гипо- и авитаминозов.

Для регуляции обмена веществ необходимы весьма ничтожные количества витаминов, но они не имеют никакого энергетического значения. Роль витаминов подобна ферментам и гормонам. Многие витамины входят в состав ферментов.

Так как жизнь без витаминов невозможна, то необходимо постоянное их поступление в организм, в котором они подвергаются быстрому распаду.

Главный источник витаминов — растительная пища, но они содержаться также в рыбных и мясных продуктах, молоке, яйцах.

При отсутствии витаминов в пище в организме возникают нарушение функций и заболевания, которые обозначаются как авитаминоз (цинга, рахит, множественное воспаление нервов, кровоизлияния, задержка роста и др.).

При недостаточном содержании витаминов в пище или нормальном их содержании, но увеличении потребления возникают гиповитаминозы, при которых понижена работоспособность и имеется предрасположение к заболеваниям.

Некоторые витамины легко разрушаются под влиянием света, температуры, кислорода, поэтому организм может испытывать их недостаток и при употреблении богатой витаминами пищи, в которой они подвергались разрушению процессе её хранения и приготовления.

Витамины разделяются на две группы: а) растворимые в воде: B1, B2, B3, B4, B5, B6, B12, B15, H, инозит, фолиевая кислота, пантотеновая кислота, PP, С, P и б) растворимые в жирах: A, D, F, E, K.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал