Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Методы теоретического исследования. См. 18
23. Методы логического анализа: Логические методы исследования базируются на применении в процессе исследований формальной логики. Формальная логика — наука о законах выводного знания, т.е. знания, полученного из ранее установленных и проверенных истин, без обращения в каждом конкретном случае к опыту, а только в результате применения законов и правил мышления. Формальная логика включает: традиционную логику; математическую логику. Традиционная логика при получении новых (выводных) знаний использует следующие логические методы. Анализ — логический метод расчленения целого на отдельные элементы с рассмотрением каждого из них в отдельности. Синтез — объединение всех данных, полученных в результате анализа. Синтез не простое суммирование результатов анализа. Его задача состоит в мысленном воспроизведении основных связей между элементами анализируемого целого. Индукция — процесс движения мысли от частного к общему, от ряда факторов к закону. Индуктивный прием обычно используется в тех случаях, когда на основе частного факта можно сделать вывод, установить взаимосвязь между отдельными явлениями и каким-либо законом. Дедукция — это процесс движения мысли от общего к единичному, от закона к отдельным его проявлениям. Абстрагирование — способность отвлечься от всей совокупности факторов и сосредоточить внимание на каком-либо одном вопросе. Конкретизация — увязка того или иного явления с конкретными условиями обстановки. Конкретное понятие есть своего рода совокупность различных абстракций, или абстрактных понятий, отражающих определенные свойства, стороны и связи данного предмета. Конкретные понятия возникают в результате последовательного дополнения и уточнения, расширения и синтеза отдельных абстракций, отражающих различные стороны и связи конкретных вещей. Аналогия (традукция) — прием, в котором из сходства двух явлений в одних условиях делается вывод о сходстве этих явлений в других условиях. В логике аналогия рассматривается как форма получения выводного знания, как умозаключение, в котором на основании сходства предметов в одних признаках делается вывод о сходстве этих предметов в других признаках. Метод аналогии широко используется в моделировании, так как модель — аналог объекта, изучаемого посредством моделирования. Сравнение — установление сходства или различия явлений, процессов и объектов в целом или в каких-либо признаках. Сравнение — метод, позволяющий обнаружить тенденции общего хода процесса развития, вскрыть изменения, происходящие в развитии явления. Группирование – метод определения и выделения из исследуемой совокупности предметов и явлений однородной группы за определенными признаками и характеристикой. Применение гипотетико-дедуктивного метода также может быть описано в форме своего рода алгоритма. 1. Как и в случае аксиоматико-дедуктивного метода, вначале предполагается существование некоторого фиксированного множества утверждений, принимаемых в качестве истин И в рамках некоторого раздела научного знания. 2. Ставится задача расширения этого множества истин в форме добавления к множеству И новых истин. 3. Для достижения такого расширения, формулируются гипотезы как множество И 1 возможных новых истин. 4. Из множества И 1 возможных истин по правилам логического вывода выводят множество С 1 различных следствий. 5. Полученные следствия из С 1 пытаются проверить в опыте. Если это удается сделать, то множество И 1 начинает рассматриваться как более вероятное множество истин. 6. Если же следствия в опыте не подтверждаются, то вероятность истинности утверждений из И 1 снижается, и И 1 может быть пересмотрено до нового множества возможных истин И 2. По отношению к И 2 повторяются шаги 4-6. 7. Обычно из И 1 выводят новые следствия С 2, …, С n – до тех пор, пока И 1 не будет пересмотрено до И n, и вероятность утверждений из И n не повысится настолько, что научное сообщество примет И n как множество новых истин, добавленное к множеству И. Гипотетико-дедуктивный метод, в отличие от аксиоматико-дедуктивного, - это метод преимущественно экстенсивный, позволяющий не столько организовывать имеющееся множество истин, сколько расширять его за счет добавления новых истин. В этом методе преобладает индуктивное движение, связанное с повышением вероятности возможных истин в том случае, если выведенные из них следствия получают подтверждение в опыте (шаг 5). Но и в этом методе есть элементы дедукции, например, в процедуре выведения следствий из гипотез (шаг 4) и снижения вероятности гипотез при неподтверждении в опыте полученных из них следствий (шаг 6). Следовательно, и гипотетико-дедуктивный метод есть единство индукции и дедукции, хотя и с преобладанием индуктивной составляющей. Достоинство гипотетико-дедуктивного метода состоит в возможности расширения имеющегося знания. Ограниченность этого метода заключена в отсутствии задач организации имеющегося знания. В целом можно заметить, что оба метода – аксиоматико-дедуктивный и гипотетико-дедуктивный – должны дополнять друг друга в процессе развития научного знания. Аксиоматико-дедуктивный метод преимущественно организует полученное знание, гипотетико-дедуктивный метод расширяет область достигнутого знания. Иногда гипотетико-дедуктивный метод научного познания понимают в более широком смысле – как единство описанных выше двух методов, как наиболее полный метод научного познания. 24. Взаимодействие научной картины мира и опыта как начальный этап становления новой дисциплины: Подход к научному исследованию как к исторически развивающемуся процессу означает, что сама структура научного знания и процедуры его формирования должны рассматриваться как исторически изменяющиеся. Опираясь на представления о структуре науки, можно проследить, как в ходе ее эволюции возникают новые связи и отношения между ее компонентами, связи, меняющие стратегию научного поиска. Выделяются основные ситуации, характеризующие процесс развития науки: взаимодействие картины мира и опытных фактов, формирование первичных теоретических схем и законов, становление развитой теории. Взаимодействие оснований науки и опыта реализуется: 1) на этапе становления новой научной дисциплины, 2) в теоретически развитых дисциплинах при эмпирическом обнаружении и исследовании принципиально новых явлений, которые не вписываются в уже имеющиеся теории. Зарождение научной дисциплины вначале проходит стадию накопления эмпирического материала об исследуемых объектах. В этих условиях эмпирическое исследование целенаправлено сложившимися идеалами науки и формирующейся картиной исследуемой реальности. Последняя образует тот специфический слой теоретических представлений, который обеспечивает постановку задач эмпирического исследования, видение ситуаций наблюдения и эксперимента и интерпретацию их результатов. Различают: додисциплинарную науку XVII века, дисциплинарно организованную XIX - первая половина XX в., современная наука с ее усиливающимися междисциплинарными связями. Первая наука, сформировавшая целостную картину мира, опирающуюся на результаты экспериментальных исследований, - физика, которая в начале содержала множество натурфилософских наслоений, однако она целенаправляла процесс эмпирического исследования. Характерный пример взаимодействия картины мира и опыта в эпоху становления естествознания - эксперименты В.Гильберта, в которых исследовались особенности электричества и магнетизма. Он был одним из первых, противопоставивший мировоззренческим установкам средневековой науки новый идеал - экспериментальное изучение природы. Хотя он критиковал концепцию четырех элементов (земли, воды, воздуха и огня) как основу всех других тел, он использовал представления о металлах как сгущениях земли и об электризуемых телах как о сгущениях воды. Выдвинул ряд гипотез о электрических и магнитных явлениях, которые не выходили за рамки натурфилософских построений, но послужили импульсом к постановке экспериментов, обнаруживших реальные факты (огонь проводник, земля – шаровой магнит). Так как к.м. направляет наблюдения и эксперименты, она всегда испытывает их обратное воздействие. Можно констатировать, что новые факты, полученные В. Гильбертом в процессе эмпирического исследования процессов электричества и магнетизма, генерировали ряд достаточно существенных изменений в первоначально принятой картине мира (с представлениями о Земле как большом магните говорит о планетах как о магнитных телах, которые удерживаются на орбитах силами магнитного притяжения). Ранее силу рассматривали как результат соприкосновения тел. Новая трактовка силы - преддверие будущей механической картины мира, где передача сил на расстоянии трактуется как источник изменений в состоянии движения тел. Полученные из наблюдения факты могут не только видоизменять сложившуюся картину мира, но и привести к противоречиям в ней, потребовав ее перестройки. Пройдя длительный этап развития, картина мира очищается от натурфилософских наслоений и превращается в специальную картину мира, конструкты которой вводятся по признакам, имеющим опытное обоснование. В истории науки такую эволюцию осуществила физика. Важнейшую роль в построении механической картины мира сыграли: принцип материального единства мира, исключающий схоластическое разделение на земной и небесный мир, принцип причинности и закономерности природных процессов, принципы экспериментального обоснования знания и установка на соединение экспериментального исследования природы с описанием ее законов на языке математики. Обеспечив построение механической картины, эти принципы превратились в ее философское обоснование. После возникновения механической картины мира процесс формирования специальных картин мира протекает уже в новых условиях. Специальные картины мира, возникавшие в других областях естествознания, испытывали воздействие физической картины мира как лидера естествознания и, в свою очередь, оказывали на физику активное обратное воздействие. В самой же физике построение каждой новой картины мира происходило не путем выдвижения натурфилософских схем с их последующей адаптацией к опыту, а путем преобразования уже сложившихся физических картин мира, конструкты которых активно использовались в последующем теоретическом синтезе (изучение квазаров – для подтверждения выдвинутых гипотез экспериментально обнаружены новые факты, которые объясняются в рамках уже созданной научной картины).
25. Формирование частных теоретических моделей и законов. Роль аналогий в теоретическом поиске. Процедуры обоснования теоретических знаний: Модели позволяют представить в наглядной форме объекты и процессы не доступные для непосредственного восприятия (м. Вселенной, м. атома). Понятие закон указывает на наличие внутренне необходимых, устойчивых и повторяющихся связей между событиями и состояниями объектов. Формирование законов предполагает, что обоснованная экспериментально или эмпирически гипотетическая модель имеет возможность для превращения в схему. Формирование законов предполагает, что обоснованная эмпирически гипотетическая модель имеет возможность для превращения в схему, которая вводится вначале как гипотетическая конструкция, затем адаптируется к определенной совокупности экспериментов и в этом процессе обосновывается как обобщение опыта. Далее ее применения к многообразию вещей (качественное расширение). После - этап количественного математического оформления и фаза появления закона. Модель - схема - качественные / количественные расширения - метаматизация - формулировка закона. Научные исследования в различных областях стремятся не просто обобщить события в мире опыта, но и выявить регулярности, установить общие законы. В развитой науке теоретические схемы создаются вначале как гипотетические модели, а затем обосновываются опытом. Их построение осуществляется за счет использования абстрактных объектов, ранее сформированных в сфере теоретического знания и применяемых в качестве строительного материала при создании новой модели. Построение научной теории: 1.выдвижение гипотезы, 2. ее обоснование. Перенос абстрактных объектов из одной области знаний в другую предполагает существование аналогий, которые указывают на отношения сходства между вещами. Выделяют: А. неравенства – разные предметы имеют одно имя, А. пропорциональности (здоровье физическое, здоровье умственное); А. атрибуции, когда одинаковые отношения по – разному приписываются объекту (здоровый образ жизни – здоровый организм – здоровое общество и т. д.). Т. о. умозаключение по А. позволяет уподоблять новое единственное знание другому, уже известному явлению. Важную роль А. играла в становлении классической механики, в А. геометрической, в теории электромагнитного поля Максвелла. Метод А. широко используется в сфере технических наук. Для них важна процедура сведения, где при создании сходных с изобретением объектов сводятся одни группы знаний к другим.(составление аналогичной модели здания для его построения). Огромное значение имеет процедура схематизации, которая замещает реальный инженерный объект, идеализированной схемой. (построение схемы механизма, чтобы понять суть его работы). Необходимым условием является математизация. Одной из наиболее важных процедур в науке считалась процедура обоснования теоретических знаний, и наука часто трактовалась как «объяснительное мероприятие». Обоснование - приведение тех убедительных аргументов, или доводов, в силу которых следует принять к.-л. утверждение или концепцию. Обоснования делятся на абсолютные и сравнительные. Абсолютное О. — это приведение тех убедительных или достаточных оснований, в силу которых должно быть принято обосновываемое положение. Сравнительное О. — система убедительных доводов в поддержку того, что лучше принять обосновываемое положение, чем иное, противопоставляемое ему положение. Объяснение всегда сталкивалось с проблемой контрафактности и было уязвимо в ситуации, где необходимо было строго провести разграничение между обоснованием и описанием. Обоснование опирается на процедуру сведения неизвестного к известному, незнакомого к знакомому. Последние достижения науки показывают, что это не всегда возможно, многие процессы современной физической картины мира принципиально не представимы и не вообразимы. Обоснование лишается своего модельного характера, наглядности и должно опираться на концептуальные приемы, в которых сомнению подвергается сама процедура сведения неизвестного к известному. Бывает, что объекты, которые необходимо объяснить, нельзя наблюдать (пример – кварк). Т/о, научно-теоретическое познание приобретает внеопытный характер. Внеопытная реальность позволяет иметь о себе внеопытное знание. Это заключение современной философии науки вне вышеприведенного контекста не всеми учеными воспринимаются как научное, ибо процедура научного обоснования опирается на то, что объясненным быть не может. Аналитическая форма обоснования связана с дедукцией и с понятием «логического следования». Пример: нахождение новых химических элементов. Процедура обоснования предполагает: а) эмпирическую проверку предложений, говорящих об определенных условиях; б) эмпирическую проверку универсальных гипотез, на которых основывается объяснение; в) исследование того, является ли объяснение логически убедительным. рассмотрим основные способы обоснования, применявшиеся в разные периоды истории, начиная со средневековья (поскольку возникновение науки принято относить к новому времени, то начинать следует с предшествующей эпохи, чтоб подчеркнуть произошедшие изменения). В соответствии с общими мировоззренческими принципами, со сложившимися в культуре своего времени ценностными ориентациями и познавательными установками ученый Средневековья различал правильное знание, проверенное наблюдениями и приносящее практический эффект, и истинное знание, раскрывающее символический смысл вещей, позволяющее через чувственные веши микрокосма увидеть макрокосм, через земные предметы соприкоснуться с миром небесных сущностей. Поэтому при обосновании знания в средневековой науке ссылки на опыт как на доказательство соответствия знания свойствам вещей в лучшем случае означали выявление только одного из многих смыслов вещи, причем далеко не главного смысла. В то же время ссылки на священное писание воспринимались, как серьезные основания для принятия какой-либо концепции. Становление естествознания в конце XVI — начале XVII в. утвердило новые идеалы и нормы обоснованности знания. В соответствии с новыми ценностными ориентациями и мировоззренческими установками главная цель познания определялась как изучение и раскрытие природных свойств и связей предметов, обнаружение естественных причин и законов природы. Отсюда в качестве главного требования обоснованности знания о природе было сформулировано требование его экспериментальной проверки. Эксперимент стал рассматриваться как важнейший критерий истинности знания (в период нового времени вера в то, что наука описывает реальность (реализм), доминировала, что уравнивало истинность и обоснованность). Таким образом, основные процедуры обоснования теоретического знания нового времени опирались на взгляды эмпиризма (Бэкон, Гоббс, Локк). В двадцатом веке, произошли серьезные изменения в используемых процедурах обоснования теоретического знания, чему в немалой степени способствовал постпозитивизм. Так происходит переход от абсолютного обоснования к сравнительному. Приходит понимание того, что никаких абсолютно надежных и не пересматриваемых со временем оснований и теоретического, а тем более практического знания не существует, можно говорить только об относительной их надежности. В двадцатом века в процессе обоснования используются многочисленные и разнообразные приемы, удельный вес которых меняется от случая к случаю и которые несводимы к какому-то ограниченному, каноническому их набору. Из многообразных способов обоснования, можно выделить наиболее часто используемые способы: Проверка выдвинутого положения на соответствие установившимся в науке законам, принципам, теориям и т.п. Утверждение должно находиться также в согласии с фактами, на базе которых и для объяснения которых оно предложено. Требование такой проверки не означает, конечно, что новое утверждение должно полностью согласовываться с тем, что считается в данный момент законом и фактом. Может случиться, что оно заставит иначе посмотреть на то, что принималось раньше, уточнить или даже отбросить что-то из старого знания. Анализ логических связей утверждения с ранее принятыми общими принципами: если утверждение логически следует из установленных положений, оно обоснованно и приемлемо в той же мере, что и эти положения. Фальсифицирующая критика теорий конкурентов. Наличие противоречий конкурирующего подхода с фактами или ранее установившимся теоретическим взглядам стимулирует принятие альтернативы. Анализ утверждения с т.зр. возможности эмпирического подтверждения или опровержения. Если такой возможности в принципе нет, не может быть и оснований для принятия утверждения: научные положения должны допускать принципиальную возможность опровержения и предполагать определенные процедуры своего подтверждения. Если утверждение касается отдельного объекта или ограниченного круга объектов, оно может быть обосновано с помощью непосредственного наблюдения каждого объекта. Научные положения касаются обычно неограниченных совокупностей вещей, поэтому сфера применения прямого наблюдения в этом случае является узкой. Выведение следствий из выдвинутого положения и эмпирическая проверка их. Это универсальный способ обоснования теоретических утверждений, но способ, никогда не дающий полной уверенности в истинности рассматриваемого положения. Подтверждение следствий повышает вероятность утверждения, но не делает его достоверным. Внутренняя перестройка теории, элементом которой является обосновываемое положение. Совершенствование теории, укрепление ее эмпирической базы и прояснение ее общих, филос. редпосылок одновременно является вкладом в исходных допущений, аксиоматизация и, если это возможно, ее формализация. Сравнение сложности теорий. Предпочтение отдается более простым теориям. Сравнение по критерию конструктивности. Таким образом, процессы обоснования теоретических знаний на современном этапе характеризуются множественностью процедур и использованием сравнительного обоснования. Обоснование теоретического утверждения — сложный и противоречивый процесс, не сводимый к построению отдельного умозаключения или проведению одноактной эмпирической проверки. При этом из процесса обоснования не исключаются ни аксиомы, ни определения, ни суждения непосредственного опыта. Обоснование теоретического утверждения слагается из целой серии процедур, касающихся не только самого утверждения, но и той теории, составным элементом которой оно является, или использует в процедуре обоснования.
26. Становление развитой научной теории (классический и неклассический варианты формирования теории):
Любая теория - это целостная развивающаяся система истинного знания, имеющая сложную структуру и выполняющая ряд функций, как форма научного знания направлена на обнаружение закономерностей того или иного фрагмента действительности. В процессе построения научной теории (процесс, координируемый научными целями и задачами) задействованы сеть базовых понятий, совокупность методов, методологические нормы и принципы, данные экспериментов, обобщения фактов и заключения теоретиков и экспертов. Развитая теория содержит в себе сведения о причинных, генетических, структурных и функциональных взаимодействиях реальности. По форме теория предстает как система непротиворечивых, логически взаимосвязанных утверждений. Теории опираются на специфический категориальный аппарат, систему принципов и законов. Развитая теория открыта для описания, интерпретации и объяснения новых фактов, и готова включить в себя дополнительные метатеоретические построения. Развитая теория - не просто совокупность связанных положений, но содержит в себе механизм концептуального движения, внутреннего развертывания содержания, включает в себя программу построения знания (целостность теории). Еще одна особенность - роль языка в процессе построения развитой научной теории. Язык — это способ объективированного выражения содержания науки. Язык развитой научной теории во многом искусственен. Надстраиваясь над естественным языком, он подчинен иерархии, обусловленной иерархичностью научного знания. Пути создания искусственных языков теории: 1) терминологизация слов естественного языка, 2)калькирование терминов иноязычного происхождения и 3)формализация языка. Классический вариант формирования развитой теории предполагает теорию, отражающую системы закрытого типа. Идеал такой теории — ньютонианская физика. «Закрытые» теории имеют определенный и ограниченный набор исходных утверждений, все остальные утверждения должны быть получены из исходных непротиворечивым путем посредством применения правил вывода. В науке классического периода развитые теории создавались путем последовательного обобщения и синтеза частных теоретических схем и законов: ньютоновская механика, термодинамика, электродинамика. Формирование частных законов, так и общих теорий есть процесс коллективного творчества. Классические научные теории в своей основе являются дедуктивными, им присущ: 1) Финализм-уверенность в окончательном и полном характере знания выражается в этих теориях. 2)Имперсональность – в отношении к этому знанию не учитывались ограничения личного, парадигмального, хронологического и прочего характера. 3)Наглядность – знание было убедительным. 4)Жесткий детерминизм – т. е. считается не допустимым вероятность и неопределенность в рамках этих теорий. 5)монотеризм – убежденность в достаточности 1 теории для полного описания класса однородных объектов. Неклассический вариант формирования теории строится методом «математических» гипотез. Построение теории начинается с формирования ее математического аппарата, а адекватная ей теоретическая схема создается после создания математического аппарата. Он ориентируется на открытые системы и такие разновидности сложных объектов, как статистические, кибернетические, саморазвивающиеся системы. Теория как открытая система содержит в себе механизмы своего развития, запускаемые как посредством знаково-символических операций, так и благодаря введению различных гипотетических допущений. Существует путь мысленного эксперимента с идеализированными объектами. Каждый критерий в отдельности не самодостаточен. Используемые вместе, они время от времени входят в конфликт друг с другом. Точность может предполагать выбор для одной конкретной теории область приложения ее конкурента. От точности теории зависит ее объяснительная и предсказательная сила. Особенности неклассических теорий: 1-Предмет изучения – эволюционирующие, самоорганизующиеся объекты. 2-Утрачен принцип наглядности. 3- широко используется математический аппарат, на основе не линейных систем уравнений (Линейная в 1-й степени!). 4-Происходит отказ от финализма и монотеоретизма. 5-Знание носит релятивистский характер, т. е. запрещается полагание абсолютной системы отсчета чего бы то ни было (Читаете книгу плывя на корабле, на суше она остается на месте…). 6-Произошло изменение представлений о роли субъекта и технических средств в процессе познания: никакое знание не претендует на абсолютную объективность и всякое знание учитывает погрешность технических средств. 7-помимо динамических законов, которые описывают поведение одного объекта используются статистические законы, описывающие поведение совокупности объектов и носящие вероятностный характер. Для неклассического этапа развития научно-теоретического знания характерен так называемый лингвистический поворот, т.е. остро поставленная проблема соотношения формальных языковых конструкций и действительности. Отношение языковых структур к внешнему миру не сводится лишь к формальному обозначению и кодированию. Язык науки ответствен за логическое упорядочивание и сжатое описание фактов. Вместе с тем очевидно, что реализация языковой функции упорядочивания и логической концентрации, сжатого описания фактического материала ведет к значительной трансформации в смысловом (семантическом) отношении, к определенному пересмотру самого события или цепочки событий. современный этап развития науки непосредственно связан с развитием языковых средств, с выработкой более совершенного языка и с переводом знаний с прежнего языка на новый. В науке четко проявляется тенденция перехода от использования языка наблюдений и описания к языку идеализированной предметности.
27. Проблемные ситуации в науке:
Проблема — форма теоретического знания, содержанием которой является то, что еще не познано человеком, но что нужно познать. Проблема не есть застывшая форма зна-ния, а процесс постановки и решение. Правильное выведение проблемного знания из предшествующих фактов и обобщений, умение верно поставить проблему — необходимая предпосылка ее успешного решения. К. Поппер: наука начинает не с наблюдений, а именно с проблем, и ее развитие есть переход от одних проблем к другим — от менее глубоких к более глубоким. Проблемы возникают: а) либо как следствие противоречия в отдельной теории; б) либо при столкновении двух различных теорий; в) либо в результате столкновения теории с наблюдениями. Для успешного решения любой научной проблемы два основных условия: а) ясное, четкое ее формулирование; б) критическое исследование различных ее решений. Тем самым научная проблема выражается в наличии противоречивой ситуации. Определяющее влияние на способ постановки и решения проблемы имеет 1) характер мышления эпохи, 2) уровень знания о тех объектах, которых касается возникшая проблема. Этап проблемного осмысления, формулировки основной проблемы исследования опирается на использование уже имеющегося познавательного арсенала, т.е. теоретических конструктов, идеализации, абстрактных объектов, но учитывает новые факты и данные, которые могут расходиться с устоявшимся объемом знания. Вслед за осознанием проблемы для ее разрешения выдвигается гипотеза, которая оценивается как необходимое основание при создании теоретической модели. Проблемные ситуации являются необходимым этапом развития научного познания и достаточно явно фиксируют противоречие между старым и новым знанием, старое знание не может развиваться на своем прежнем основании, а нуждается в его детализации или замене. Проблемные ситуации предполагают особую концентрацию рефлексивного осмысления и рационального анализа, они указывают на недостаточность и ограниченность прежней стратегии научного исследования и культивируют эвристический поиск. Проблемные ситуации свидетельствуют о столкновении программ исследования, подвергают их сомнению, заставляют искать новые способы вписывания предметности в научный контекст. Симптоматикой проблемных ситуаций в науке является возникновение множества контрпримеров, которые влекут за собой множество вопросов и рождают ощущение сомнения, неуверенности и неудовлетворенности наличным знанием. Результатом выхода из проблемных ситуаций является конституирование новых, рационально осмысленных форм организации теоретического знания. Проблемные ситуации возникают, когда трудно установить специфику функционирования теории в соотношении с ее эмпирическим базисом. В этом случае поиск причинно-следственных отношений является основополагающим условием разрешения данной проблемной ситуации. Принцип причинности всегда занимает доминирующее место в научном исследовании. Современная философия науки осознает в качестве глобальной проблемную ситуацию, связанную с заменой представлений о линейном детерминизме и принудительной каузальности, нелинейной парадигмой, предполагающей квантово-механические эффекты, т.е. не элиминируемость случая, стохастические взаимодействия. Другой, не менее масштабной проблемной ситуацией считается напряжение между рациональностью и сопровождающими ее внерациональными формами постижения действительности. Слепая вера в рациональность осталась в прошлом, как образец классического естествознания. В поле проблемных ситуаций «затянут» и столь прочный способ эмпирического исследования как эксперимент. Эксперимент считается наиболее характерной чертой классической науки, однако он не может быть применен в языкознании, истории, астрономии и (по этическим соображениям) в медицине. Таким образом, проблемные ситуации, фиксируя противоречие между теорией и фактом, старыми и новыми данными, универсальны и играют в научном исследовании роль пускового механизма. 28. Проблема включения новых теоретических представлений в культуру: Проблема включения новых теоретических представлений в культуру связана с обеспечением приемственности в развитии интеллектуального потенциала человека. Она затрагивает два аспекта: - материальное воплощение и внедрение научных открытий в сферу производственного процесса; - включение в современные технологии, практику воспитания и обучения. Новые теоретические представления способны трансформировать культурные стереотипы, внести в культуру системные изменения. На процесс включения НТП в культуру влияют: - микроконтекст науки – зависимость науки от характеристик научного сообщества, работающего в условия определенной эпохи; - макроконтекст науки – зависимость от социокультурной среды, в которой развивается наука (шире, чем микро-). Социальность науки может быть внешней (зависимость от социально-экономических, идеологических и духовных условий) или внутренней (ментальные установки, нормы и ценности общества). Включение НТП связано с: 1) запретом на разглашение наиболее секретных разработок; 2) запреты социально-сложных в этическом плане исследований; 3) механизмом торможения, препятствующим непосредственному проникновению новых научных данных в культуру. Объективной основой преемственности в науке является то реальное обстоятельство, что в самой действительности имеет место поступательное развитие предметов и явлений, вызываемое внутренне присущими им противоречиями. Воспроизведение реально развивающихся объектов, осуществляемое в процессе познания, также происходит через диалектически отрицающие друг друга теории, концепции и другие формы знания. Очень образно этот процесс описали А. Эйнштейн и Л. Инфельд: "...Создание новой теории не похоже на разрушение старого амбара и возведение на его месте небоскреба. Оно скорее похоже на восхождение на гору, которое открывает новые и широкие виды, показывающие неожиданные связи между нашей отправной точкой и ее богатым окружением. Но точка, от которой мы отправлялись, еще существует и может быть видна, хотя она кажется меньше и составляет крохотную часть открывшегося нашему взгляду обширного ландшафта". В этом процессе " восхождения на гору" содержание отрицаемых знаний не отбрасывается полностью, а сохраняется в новых концепциях в " снятом" виде, с удержанием положительного. Новые теории не отрицают полностью старые, потому что последние с определенной степенью приближения отображают объективные закономерности действительности в своей предметной области. История науки показала, что, например, "...в физике более поздние этапы ее развития вовсе не сводят к нулю значение более ранних стадий, а лишь указывают границы применимости этих более ранних стадий, включая их как предельные случаи в более широкую систему новой физики". Диалектическое отношение новой и старой теории в науке нашло свое обобщенное отражение в принципе соответствия, впервые сформулированном Нильсом Бором. Согласно данному принципу, смена одной частнонаучной теории другой обнаруживает не только различия, но и связь, преемственность между ними. Новая теория, приходящая на смену старой, в определенной форме - а именно в качестве предельного случая - удерживает ее. Так, например, обстояло дело в соотношении " классическая механика - квантовая механика". Поэтому, по словам Эйнштейна, " лучший удел" какой-либо теории состоит в том, чтобы указывать путь создания новой, более общей теории, в рамках которой она сама остается предельным случаем. При этом новая теория выявляет как достоинства, так и ограниченность старой теории и позволяет оценить старые понятия с более глубокой точки зрения. Философско-методологическое значение принципа соответствия состоит в том, что он выражает диалектику процесса познания, перехода от относительных истин к абсолютной, преемственность в развитии знания, диалектическое отрицание старых истин, теорий, методов новыми. Причем теории, истинность которых установлена для определенной группы явлений, с построением новой теории не отбрасываются, не утрачивают свою ценность, но сохраняют свое значение для прежней области знаний как предельное выражение законов новых теорий. Вот почему успешно строить новый мир идей и знаний можно, лишь бережно сохраняя все истинное, ценное, оправдавшее себя в старых теоретических концепциях. Одна из характерных особенностей " драмы идей" в физическом познании (и не только в нем) заключалась в том, что " успеха в прокладывании новых путей добивались именно те физики, которые соединяли в себе два необходимых качества: 1) чувство нового: они видели новые данные опыта, требующие изменения устоявшихся взглядов, они не отмахивались от нового. Они активно искали пути объяснения новых фактов, не останавливаясь перед изменением устоявшихся теорий; 2) бережное уважение к наследию старого: эти физики понимали, что в физике XIX века должно сохраниться все ценное, оправдавшее себя на опыте и практике". Только таким способом может быть обеспечен прогресс в развитии науки. В процессе развития научного познания возможен обратный переход от последующей теории к предыдущей, их совпадение в некоторой предельной области, где различия между ними оказываются несущественными. Например, законы квантовой механики переходят в законы классической при условии, когда можно пренебречь величиной кванта действия, а законы теории относительности переходят в законы классической механики при условии, если скорость света считать бесконечной. Так, В. Гейзенберг отмечал, что " релятивистская механика и в самом деле переходит в ньютоновскую в предельном случае малых скоростей... Мы, стало быть, и сегодня признаем истинность ньютоновской механики, даже ее строгость и общезначимость, но добавляя " везде, где могут быть применены ее понятия", мы указываем, что считаем область применения ньютоновской теории ограниченной". Таким образом, любая теория должна переходить в предыдущую менее общую теорию в тех условиях, в каких эта предыдущая была установлена. Поэтому-то " ошеломляющие идеи" теории относительности, совершившие переворот в методах физического познания, не отменили механики Ньютона, а лишь указали границы ее применимости. На каждом этапе своего развития наука использует фактический материал, методы исследования, теории, гипотезы, законы, научные понятия предшествующих эпох и по своему содержанию является их продолжением. Поэтому в каждый определенный исторический период развитие науки зависит не только от достигнутого уровня развития производства и социальных условий, но и от накопленного ранее запаса научных истин, выработанной системы понятий и представлений, обобщившей предшествующий опыт и знания. Как бы ни был гениален ученый, он так или иначе должен исходить из знаний, накопленных его предшественниками, и знаний современников. Известна знаменитая фраза Ньютона: " Я стоял на плечах гигантов". При выборе объектов исследования и выводе законов, связывающих явления, ученый исходит из ранее установленных законов и теорий, существующих в данную эпоху. Как в этой связи отмечал Д. И. Менделеев, истинные открытия делаются работой не одного ума, а усилием массы деятелей, из которых иногда один есть только выразитель того, что принадлежит многим, что есть плод совокупной работы мысли. Важный аспект преемственного развития науки состоит в том, что всегда необходимо распространять истинные идеи за рамки того, на чем они опробованы. Подчеркивая это обстоятельство, крупный американский физик-теоретик Р. Фейнман писал: " Мы просто обязаны, мы вынуждены распространять все то, что мы уже знаем, на как можно более широкие области, за пределы уже постигнутого... Это единственный путь прогресса. Хотя этот путь неясен, только на нем наука оказывается плодотворной". Таким образом, каждый шаг науки подготавливается предшествующим этапом и каждый ее последующий этап закономерно связан с предыдущим. Заимствуя достижения предшествующей эпохи, наука непрерывно движется дальше. Однако это не есть механическое, некритическое заимствование; преемственность не есть простое перенесение старых идей в новую эпоху, пассивное заимствование полностью всего содержания используемых теорий, гипотез, методов исследования. Она обязательно включает в себя момент критического анализа и творческого преобразования. Преемственность представляет собой органическое единство дух моментов: наследования и критической переработки. Только осмысливая и критически перерабатывая знания предшественников, ученый может развивать науку, сохраняя и приумножая истинные знания и преодолевая заблуждения. Процесс преемственности в науке (но не только в ней) может быть выражен в терминах " традиция" (старое) и " новация" (новое). Это две противоположных диалектически связанные стороны единого процесса развития науки: новации вырастают из традиций, находятся в них в зародыше; все положительное и ценное, что было в традициях, в " снятом виде" остается в новациях. Новация (в самом широком смысле) - это все то, что возникло впервые, чего не было раньше. Характерный пример новаций - научные открытия, фундаментальные, " сумасшедшие" идеи и концепции - квантовая механика, теория относительности, синергетика и т.п. Формулируя новые научные Традиции в науке - знания, накопленные предшествующими поколениями ученых, передающиеся последующим поколениям и сохраняющиеся в конкретных научных сообществах, научных школах, направлениях, отдельных науках и научных дисциплинах. Множественность традиций дает возможность выбора новым поколениям исследователей тех или иных из них. А они могут быть как позитивными (что и как воспринимается), так и негативными (что и как отвергается). Жизнеспособность научных традиций коренится в их дальнейшем развитии последующими поколениями ученых в новых условиях.
29. Взаимодействие традиций и возникновение нового знания: Проблемы традиций как основной конституционный фактор развития науки впервые были рассмотрены в трудах Томаса Куна. Ему принадлежит мысль о том, что традиции являются условием возможности научного развития. Под традицией (от лат. traditio – передача, предание) понимаются элементы социального и культурного наследия, передающиеся от поколения к поколению и сохраняющиеся в определенных обществах и социальных группах в течение длительного времени. Традиция – это выражение всего предыдущего и относительно устойчивого в социальной жизни и культуре. Она включает в себя как содержание различных сфер общества, так и механизм их преемственного развития, форму закрепления и сохранения социокультурного опыта. Это особый вид поведения, мышления и переживания, оцениваемый положительно или отрицательно, принадлежащий (действительно или мифологически) к культурному наследию социетальной группы; особый вид исторического сознания, преобразующий неоднозначность фактов прошлого в однозначные ценности современного. При этом как умаление роли традиции в общественной жизни, так и превращение ее в основу существующего социума означает неспособность правильного понимания проблемы традиций. Такое понимание зависит от интерпретации их как ценности. В жизни общества традиции способны выполнять регулятивную роль. Это особенно характерно для так называемого традиционного общества. Просвещение с его верой, основанной на выделении в истории положительного начала (разум, цивилизация, эмансипация), наделяет традиции статусом реального с отрицательным знаком; качествами предрассудка, заблуждения, фанатизма. Традиционализму противостоит понятие «новация». Рационалистическую оценку традиционализм впервые получил в философии Гегеля, четко разделившего вопрос о фактической зависимости настоящего от прошлого. Карл Маркс (1818–1883) рассматривал феномен традиционализма с позиций революционализма и рационализма. Наиболее полное описание понятие традиционализма получило в произведениях Макса Вебера (1864–1920), хотя имеется тенденция рассматривать его концепцию как несводимую двойственность. В современной философии проблемы традиционализма рассматриваются с точки зрения устойчивости, неизменности и возобновляемости структур общественного сознания и социальной практики, а также сохранения их отдельных элементов в современном обществе, в котором доминирует роль искусственного проектирования общественных связей и отношений. Традиции живут постоянно обновляясь. Однако, несмотря на их способность адаптироваться к инновациям, обретая, таким образом, вторую жизнь, существует вариант, когда традиции будут подавлять инновации, задерживая процесс развития. В этом плане традиции можно рассматривать как первичные и как вторичные. Первичные традиции складываются стихийно и воспроизводятся как фиксированные формы и последовательность действий непосредственно-практически, в подчинении ритуалу и обычаю, фольклорно-мифологическим предписаниям. Вторичные традиции – это результат рефлексивно-рациональной переработки, закрепленный в профессионально создаваемых текстах, сознательно контролируемых нормах поведения. Именно вторичные традиции подвергаются переосмыслению, развитию, обеспечивая социально-культурную преемственность. Негативная традиция – это образцы нежелательного или запрещенного прошлого, хотя она может иметь глубинные причинные мотивы и объяснения. Функционально традиции оптимизируют форму существования социальной группы в определенной природной, этнокультурной и социально-экономической среде, создают условия самоидентификации индивидов и социума с той или иной социальной структурой, выступают как система ограничения инноваций, контролируют лигитимизацию и позитивацию, осуществляют социальную коррекцию и кодификацию, «отвечают» за иммунитет общества. Возникновение нового знания сопряжено с ломкой барьеров, выстроенных традиционализмом. Неодолимость нового легитимизирована неспособностью старого обеспечить потребности развития. Традиционная наука, как известно, работает под «крышей» определенной, уже устоявшейся парадигмы. Каким образом новое утверждает себя в этих условиях? Ответ на этот вопрос содержится в исследованиях Т. Куна, К. Поппера, Д. Белла и др. В частности, американский физик, философ и историк науки Томас Кун отмечает, что, действуя по правилам господствующей парадигмы, ученый случайно и побочным образом наталкивается на такие факты и явления, которые необъяснимы в рамках этой парадигмы. Возникает необходимость изменить правила научного исследования и объяснения. Например, физики в камере Вильсона, желая увидеть след электрона, обнаружили вдруг, что этот след имеет форму развилки. Это не соответствовало их ожиданиям, но они объяснили увиденное погрешностями эксперимента. На самом деле за увиденным явлением просматривалось открытие позитрона. Под напором новых фактов, которые не укладывались в рамки старого, произошло изменение парадигмы. Нечто подобное случилось и когда астрофизики, ничего не зная о «черных» дырах, пытались объяснить этот феномен в терминах незнания. Позже стало известно, что черные дыры – это космические объекты, существование которых предсказывает общая теория относительности. В них происходит неограниченное гравитационное сжатие (гравитационный коллапс) массивных космических тел. Излучение черных дыр заперто гравитацией, поэтому их можно обнаружить лишь по их тяготению либо по тормозному излучению газа, падающего на них извне. Карл Поппер в книге «Объективное знание» (1972) утверждал: чем большее количество новых и неожиданных проблем возникает в процесс преднамеренного сопоставления друг с другом альтернативных гипотез, тем больший прогресс обеспечен науке. Развивая эту мысль, американский философ науки Пауль Фейерабенд (1924–1994) в работе «Как быть хорошим эмпириком» пишет: «...хороший эмпирик начнет с изобретения альтернатив теории, а не с прямой проверки этой теории». Далее он формулирует четыре условия строгой альтернативы: 1) альтернатива должна включать в себе некоторое множество утверждений; 2) это множество должно быть связано с предсказанием более тесно, нежели только посредством конъюнкции; 3) требуется хотя бы потенциальное свидетельство в пользу альтернативы; 4) предполагается способность альтернативы объяснить прежние успехи критикуемой теории. Фейерабенд поясняет: «Новые факты открываются чаще всего при помощи альтернатив. Если же нет альтернатив, а теория как будто успешно объясняет факты, то это всего лишь симуляция успеха, т.е. „устранение“ нежелательных для ее проверки фактов и альтернативных онтологических схем». И далее: «Изобретение альтернатив – это как раз то средство, к которому ученые... прибегают редко». Хотя, заметим, это – не панацея! 30. Научные революции как перестройка оснований науки: Научная революция – смена оснований науки. Роль научной революции в научном познании велика В динамике научного знания особую роль играют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки. Эти этапы получили название научных революций. Перестройка оснований науки, сопровождающаяся научными революциями, может явиться, во-первых, результатом внутридисциплинарного развития, в ходе которого возникают проблемы, неразрешимые в рамках данной научной дисциплины. Во-вторых, научные революции возможны благодаря междисциплинарным взаимодействиям, основанным на переносе идеалов и норм исследования из одной научной дисциплины в другую, что приводит часто к открытию явлений и законов, которые до этой «парадигмальной прививки» не попадали в сферу научного поиска. Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования. Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. В зависимости от того, какой компонент основания науки перестраивается, различают две разновидности научной революции: а) идеалы и нормы научного исследования остаются неизменными, а картина мира пересматривается; б) одновременно с картиной мира радикально меняются не только идеалы и нормы науки, но и ее философские основания. В истории науки можно обнаружить образцы обеих ситуаций интенсивного роста знаний: 1) переход от механической к электродинамической картине мира, осуществленный в физике последней четверти XIX столетия в связи с построением классической теории электромагнитного поля. Этот переход, хотя и сопровождался довольно радикальной перестройкой видения физической реальности, существенно не менял познавательных установок классической физики (сохранилось понимание объяснения как поиска субстанциональных оснований объясняемых явлений и жестко детерминированных связей между явлениями; из принципов объяснения и обоснования элиминировались любые указания на средства наблюдения и операциональные структуры, посредством которых выявляется сущность исследуемых объектов, и т.д.). 2)история квантово-релятивистской физики, характеризовавшаяся перестройкой классических идеалов объяснения, описания, обоснования и организации знаний. Научная революция - новации, которые: 1) связаны не с отдельными теориями, а с перестроением оснований науки; 2) имеют мировоззренческое значение и приводят к изменению стиля мышления; 3) во время революции происходит взаимодействие традиций и новаций внутренних и внешних факторов. Парадигма – это система норм, теории, методов, фундаментальных фактов и образцов деятельности, которые признаются и разделяются всеми членами данного научного сообщества как логического субъекта научной деятельности. Она выполняет две функции – запретительную и проективную. С одной стороны, она запрещает все, что не относится к данной парадигме и не согласуется с ней, с другой – стимулирует исследования в определенном направлении. Научная революция наступает, когда создаются новые парадигмы, оспаривающие первенство друг у друга. Они создаются, как правило, учеными-аутсайдерами, стоящими вне " школы", и их активной деятельностью по пропаганде своих идей. Процесс научной революции оказывается у Куна процессом скачкообразного отбора посредством конфликта научных сообществ, сплоченных единым " взглядом на мир". Кризис разрешается победой одной из парадигм, что знаменует начало нового " нормального" периода, создается новое научное сообщество ученых с новым видением мира, новой парадигмой. Сущность научных революций, по Куну, заключается в возникновении новых парадигм, полностью несовместимых и несоизмеримых с прежними. Он стремится подтвердить это ссылкой на якобы несоизмеримость квантовой и классической механики. При переходе к новой парадигме, по мнению Куна, ученый как бы переселяется в другой мир, в котором действует и новая система чувственного восприятия (например, там где схоласты видели груз, раскачивающийся на цепочке, Галилей увидел маятник). Одновременно с этим возникает и новый язык, несоизмеримый с прежним (например, понятие массы и длинны в классической механике и СТО Эйнштейна). Классификация научных революций: 1) по содержанию новаций: 1.1) внедрение новых методов - появление новых фундаментальных теорий является самой очевидной причиной научных революций. Фундаментальные теории нацелены на разработку основопологающих научных принципов и связаны с решением мировоззренческих проблем; 1.2) построение новых теорий - стимулируют появление новых проблем, стандартов исследования или новых областей применения; 1.3) открытие новых миров - применяется весь арсенал накопленных средств, которые адаптируются к реальности и приводят к появлению новых дисциплин. 2) по сфере возникновения новизны: 2.1) внутрипарадигмальные - новые методы, идеи и философские предпосылки изменения основания науки. Парадоксы разрешаются путем построения принципиально новых теорий. Выработка методов и идеи - длительный процесс, в начальной стадии не вступающий в оппозицию к прежнему стилю мышления, а создавая почву для идеи, которые постепенно укореняются в мировоззрении для принятия новой научной парадигмы; 2.2) межпарадигмальные - представления одной парадигмы переносятся в другую. При таком переносе становится очевидным противоречие между картиной мира (КМ) и спецификой новаций (формируется общая КМ). 3) по отношению к науке: 3.1) внутренние - связанные с развитием самой науки (1.1-1.3, 2.1-2.2); 3.2) внешние. В кризисном состоянии прежний закономерный эволюционный путь развития системы разветвляется на несколько дискретных переходов в качественно новые состояния. Такое ветвление получило название точки бифуркации. В этой точке возникают многочисленные флуктуации, и одна из них случайным образом толкает систему к «выбору» одного из возможных продолжений пути. Но возврата назад не существует, и после перехода стартует новый эволюционный этап развития вплоть до следующей точки бифуркации. Существование точек бифуркации имеет следствия, важные для понимания особенностей развития в нашем Мире. Прежде всего, возникает новое понимание соотношения случайного и закономерного в развитии. Случайным оказывается только то, что происходит в критической ситуации, сопровождаемой переходом системы в качественно новое состояние. Далее, разветвление путей развития и случайность «выбора» продолжения делает невозможным точное предсказание будущего системы на основании существовавших до перехода тенденций развития. Наконец, весь процесс развития есть движение системы от одной точки бифуркации до следующей, процесс, в котором только между точками бифуркации существуют относительно стабильные условия ее существования. С позиции синергетики научные революции можно истолковать как " точки бифуркации" развития науки и культуры. Научные революции связаны с выбором между альтернативами и с поворотом, коренным изменением в научной картине мира. В предреволюционный, критический период, как правило, происходит " размножение" научный направлений и школ, т.е. преобладают дивергентные тенденции. И именно это разнообразие подходов, концепций и интерпретаций конструктивно для выбора в " точках бифуркации" собственных устойчивых тенденций развития систем научного знания. Рост альтернативных научных школ перед научной революцией как бы заранее подготавливает системы знания к многовариантному будущему. После научной революции, в период " нормальной науки", напротив, идет формирование мощного парадигмального течения, т.е. начинают проявляться тенденции конвергенции. Пути перестройки оснований научного знания: 1) За счет внутридисциплинарного научного знания (примеры строить на примере конкретного знания). 2) За счет междисциплинарных связей при переходе с одних парадигм и установок к другим (идея эволюции). Революции: частнонаучные – смена специальной научной картины мира конкретных наук и общенаучные (глобальные) – смена общенаучной картины мира. Глобальные революции происходят гораздо реже. По Кохановскому, их было 3: 1) Аристотелевская (IV – IIIвв. до н.э.) – в результате этой революции рождается сама наука – революция в духовном мире; 2) Ньютоновская (XVII в.): осуществлена Коперником, Галилеем, Кеплером (XVI – XVII вв.), Ньютоном (механика, дифференциальное и интегральное исчисление, оптика); 3) Эйнштейновская (XIX – XX вв.): М. Квант, Н. Бор, А. Эйнштейн и др. – радикально поменялась научная общая картина мира. Возникла теория Большого взрыва.
31. Типология научных революций:
Революция – скачкообразный переход системы в новое качество. Человечество на протяжении своей многовековой истории пережило множество революций в мире науки и техники: промышленная, электротехническая, электронная, информационная и даже «зеленая» революции. Само понятие «революция» свидетельствует о радикальных ка-чественных изменениях в мире знания, о перестройке оснований науки. Симптоматичны и названия научных трудов, появляющихся в период научных революций — как правило, они начинаются словосочетаниями «Новые исследования», «Новые опыты», «Новые изобретения» и пр. Научная революция может протекать двояко: I) вызывать трансформацию специальной картины мира без изменения идеалов и норм исследования, и 2) осу-ществлять радикальные изменения и в картине мира, и в системе идеалов и норм науки. Примеры первого типа: революция в медицине, вызванная открытием В. Гарвея кругообращения крови (1628); революция в математике в связи с открытием дифференциального исчисления И. Ньютона и Г. Лейбница; кислородная теория Лавуа-зье; переход от механической картины мира к электромеханической в связи с открытием теории электромагнитного поля. Они не меняли познавательных установок классической физики, идеалов и норм исследования (признание жестко детерминированных связей процессов и явлений, исключение помех, связанных с приборами и средствами наблюдения, и т.д.). Пример научной революции второго типа — открытия термодинамики и последовавшая в середине XX в. квантово-механическая революция, которая вела не только к переосмыслению научной картины мира, но и к полному парадигмальному сдвигу, меняющему также стандарты, идеалы и нормы исследования. Отвергалась субъектно-объектная оппозиция, изменялись способы описания и обоснования знания, признавались вероятностная природа изучаемых систем, нелинейность и бифуркаиионность развития. Выделяют четыре типа научных революций по следующим основаниям: 1) появление новых фундаментальных теоретических концепций; 2) разработка новых методов; 3) открытие новых объектов исследования; 4) формирование новых методологических программ. Также выделяют типы научной революции по прочим основаниям: 1-по сегменту изменяющегося научн знания: открытие нов миров, методов, появление новых парадигм. 2-по широте охвата: глобальные революции, частные (в отдельной науке), комплексные (теория Дарвина, биолог и др). Механизм возникновения научной революции описан Т.Куном. Симптомами являются: 1-выражение недовольства действующей парадигмой. 2-Покушение на «жесткое ядро» парадигмальной теории. 3-преобладание поисковых экспериментов над проверочными. 4-Повышеный интерес к основаниям науки. Выделяют 4 глобальные научные революции: становление классического естествознания, естественно-научная революция, формирование неклассической рациональности, формирование постнеклассической рациональности. Пересмотр картины мира и идеалов познания всегда начинается с критического осмысления их природы. Если ранее они воспринимались как выражение самого существа исследуемой реальности и процедур научного познания, то теперь осознается их относительный, преходящий характер. Такое осознание предполагает постановку вопросов об отношении картины мира к исследуемой реальности и понимании историчности идеалов познания. Постановка таких вопросов означает, что исследователь из сферы специально научных проблем выходит в сферу философской проблематики. Философский анализ является необходимым моментом критики старых оснований научного поиска. Кроме критической функции, философия выполняет конструктивную функцию, помогая выработать новые основания исследования. Ни картина мира, ни идеалы объяснения, обоснования и организации знаний не могут быть получены чисто индуктивным путем из нового эмпирического материала. Сам этот материал организуется и объясняется в соответствии с некоторыми способами его видения, а эти способы задают картина мира и идеалы познания. Новый эмпирический материал может обнаружить лишь несоответствие старого видения новой реальности, но сам по себе не указывает, как нужно перестроить это видение. Перестройка картины мира и идеалов познания требует особых идей, которые позволяют перегруппировать элементы старых представлений о реальности и процедурах ее познания, элиминировать часть из них, включить новые элементы с тем, чтобы разрешить имеющиеся парадоксы и ассимилировать накопленные факты. Такие идеи формируются в сфере философского анализа познавательных ситуаций науки. Они играют роль весьма общей эвристики, обеспечивающей интенсивное развитие исследований.
32. Научные революции как точки бифуркации в развитии знания: В динамике научного знания особую роль играют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки. Эти этапы получили название научных революций. Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования. Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях: а) как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования; б) как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки. В истории естествознания можно обнаружить образцы обеих ситуаций интенсивного роста знаний. Примером первой из них может служить переход от механической к электродинамической картине мира, осуществленный в физике последней четверти XIX столетия в связи с построением классической теории электромагнитного поля. Этот переход, хотя и сопровождался довольно радикальной перестройкой видения физической реальности, существенно не менял познавательных установок классической физики. Примером второй ситуации может служить история квантово-релятивистской физики, характеризовавшаяся перестройкой классических идеалов объяснения, описания, обоснования и организации знаний. Новая картина исследуемой реальности и новые нормы познавательной деятельности, утверждаясь в некоторой науке, затем могут оказать революционизирующее воздействие на другие науки. В этой связи можно выделить два пути перестройки оснований исследования: 1) за счет внутридисциплинарного развития знаний; 2) за счет междисциплинарных связей, " прививки" парадигмальных установок одной науки на другую. Оба эти пути в реальной истории науки как бы накладываются друг на друга, поэтому в большинстве случаев правильнее говорить о доминировании одного из них в каждой из наук на том или ином этапе ее исторического развития. В кризисном состоянии прежний закономерный эволюционный путь развития системы разветвляется на несколько дискретных переходов в качественно новые состояния.
|