Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Классификация систем автоматики






Автоматические системы, используемые в строительных машинах и оборудовании для контроля, регулирования и управления, можно классифицировать по ряду признаков.

По характеру алгоритма управления различают системы по разомкнутому и замкнутому (с обратной связью) циклам, а также комбинированные системы. В первом случае в системе отсутствует обратная связь и управление является жестким. В такой системе (рис. 10.2, а) задающий сигнал X поступает в управляющее устройство УУ, из которого сигнал управляющего воздействия УВ направляется к объекту управления ОУдля получения выходных координат Y с учетом возможного воздействия сторонних помех F. При управлении по замкнутому циклу (рис. 10.2, б) в случае отклонения выходного параметра от заданного значения сигнал возвращается объектом управления на управляющее устройство для корректировки. Такие системы работают с изменяемыми структурой и законом управления. Комбинированное управление (рис. 10.2, в) характеризуется наличием в системе обратной связи и резервного управляющего устройства, подключаемого параллельно первому через элемент сравнения (анализатор). Установленные на схемах знаки «плюс» и «минус» характеризуют положительные или отрицательные значения задающего воздействия.

В зависимости от числа каналов обратной связи различают одноконтурные и многоконтурные системы. В последних всегда более одной замкнутой цепи воздействия.

По характеру применяемых сигналов различают непрерывные и дискретные (импульсные, релейные) системы.

По характеру изменения сигналов задатчика системы делят на стабилизирующие, программного управления и следящие. В стабилизирующих системах по поступающим постоянным сигналам выходные параметры поддерживаются практически с постоянными значениями (например, стабилизация температуры двигателя). В системах программного управления сигналы из задающего устройства меняются по заранее установленным законам и выходные параметры также изменяются во времени и пространстве. В следящих системах значения заранее неизвестны и из блока задающего устройства поступают случайно изменяющиеся сигналы, измеряемые соответствующими датчиками. Эти системы, в свою очередь, делятся на автономные, копирные и комбинированные.

По количеству выходных параметров различают одномерные и многомерные системы.

По расположению измерительных и сигнальных устройств относительно управляемого объекта и по его расположению относительно пульта автоматические контроль и управление разделяют на местные и дистанционные. Местный контроль и управление наибольшее распространение получили в передвижных, в том числе в строительных машинах. Дистанционный контроль и управление используют при одновременной работе с несколькими машинами или для приближения его к месту выполнения технологических операций рабочим органом машины. При этом значительно увеличивается роль каналов связи, осуществляющих передачу сигналов на расстояние. В качестве каналов связи используются механические, гидравлические, пневматические, электрические и комбинированные (смешанные) передачи.

Для лучшего усвоения материала рассмотрим блок-схемы основных автоматических систем, используемых для контроля, управления и регулирования.

При использовании в качестве конечного элемента сигнального преобразователя (рис. 10.3, 6) система автоматического контроля усложняется. В этом случае контролируемая величина а объекта О также подается на датчик Д. Однако в дальнейшем сигнал си от датчика поступает в сравнивающее устройство (анализатор) А. В анализаторе происходит сравнение сигнала а\ с сигналом сц, который должен быть равен сигналу а\ в соответствии с заданным значением величины а. При несовпадении сигналов а\ и аг анализатор посылает сигнал Аа об отклонении контролируемой величины а от заданного параметра. После прохождения усилителя У сигнал Aai поступает на сигнальный преобразователь СП. В отличие от рассмотренных схем автоматического контроля в системах прямого действия отсутствует усилитель.

По числу контролируемых величин различают единичный и множественный автоматический контроль, в одном из которых осуществляется контроль только одного параметра рабочего процесса и только в одном месте, а во втором — контроль нескольких параметров или одного параметра в нескольких местах при выполнении определенного технологического процесса. Множественный контроль, в свою очередь, делится на параллельный, последовательный и смешанный, представляющий сочетание из двух основных. При параллельном контроле используется необходимое количество каналов, обеспечивающих контроль всех измеряемых параметров во всех местах их расположения. Последовательный контроль позволяет получить информацию от нескольких датчиков к одному сигнальному преобразователю или же датчик имеет возможность перемещаться поочередно к различным местам получения информации.

Системы автоматической защиты (САЗ) также работают по разомкнутому циклу и в большинстве случаев являются системами непрямого действия, так как для подачи звуковых и световых предупреждающих сигналов, а также для отключения энергоснабжения машины или отдельных ее узлов мощность сигнала, получаемого от датчика, недостаточна. В отличие от блок-схемы системы автоматического контроля здесь в конце цепи обычно используют реле или контактор, отключающие управляющие цепи привода объекта, а также применяют параллельное включение различных датчиков на один сигнальный прибор или устройство релейной защиты.

Рис. 10.4. Блок-схема САУ

В блок-схеме этого управления (рис. 10.4) задающий сигнал а поступает в управляющее устройство УУ, из которого сигнал а\ о необходимости управления объектом поступает в усилитель У. Усиленный сигнал аг поступает в исполнительный орган ИО, оказывающий требуемое воздействие аз на объект управления ОУ.

Автоматическое управление бывает непрерывным и дискретным, по количеству управляемых объектов — единичным и множественным, а также местным и дистанционным. Примером местного единичного управления является работа однозубого рыхлителя по заданной программе. Дистанционное множественное управление широко используется в асфальто- и цементобетонных установках и заводах. В основном это программное управление различными технологическими процессами.

Системы автоматического регулирования (САР) являются разновидностью автоматического управления и предназначены для сопоставления действительного значения параметров выполняемого процесса с заданным и с дальнейшим управлением объектом в зависимости от результатов сопоставления (т. е. управление с использованием информации о результатах управления).

В соответствии с этим система автоматического регулирования осуществляет не только управление объектом, но и одновременный контроль за его правильной работой. Следует также отметить, что в системах автоматического регулирования рассматривается совместная работа регулируемого объекта и регулирующих устройств.

К регулирующим устройствам относятся автоматические регуляторы, позволяющие без участия человека выдерживать заданные параметры с требуемой степенью точности. Так как автоматический регулятор воздействует на регулируемый объект, а регулируемые параметры воздействуют на регулятор, вызывая в нем требуемое управляющее воздействие, цепь воздействия оказывается замкнутой и система работает с обратной связью.

В соответствии с используемой, по характеру изменения сигналов задатчика, системой (стабилизирующая, программная, следящая) изменяется и состав автоматического регулятора. Однако в общем случае блок-схема практически не изменяется. Рассмотрим состав и работу блок-схемы системы автоматического регулирования для ее различных видов.

При значительном расхождении параметров а\ и аг анализатор подает о полученной разнице сигнал Да = с в усилитель У. Усиленный сигнал с\ поступает в исполнительный орган ИО, изменяющий рассогласованный сигнал и передающий отрегулированное воздействие сг на объект регулирования ОР.

При различных видах систем автоматического регулирования в них вводятся дополнительные устройства.

В стабилизирующей САР вводится задатчик 3, подающий постоянный сигнал аг (соответствующий такому сигналу а\, который появляется в датчике Д при соразмерности регулируемого параметра а заданному постоянному значению) в анализатор А.

В программной САР сигнал аг, изменяющийся по заданному закону во времени, подается в анализатор А также от задатчика. Однако для перемещающихся во время работы машин, регулируемые параметры которых изменяются по заданной функции пути, сигнал задатчика связан с длиной пройденного пути, измеряемого дополнительным датчиком времени или пройденного пути Д2.

Различают САР прямого и непрямого действия, непрерывные и дискретные, одно- и многоконтурные и т. д.

Наряду с вышерассмотренными, в системе автоматического регулирования используется и самонастраивающая (адаптивная) система, определяющая путем автоматического поиска такое значение регулируемого параметра, которое обеспечивает наивыгоднейший режим работы регулируемого объекта при изменяющихся условиях его работы.

В качестве рабочих элементов в автоматических системах управления, регулирования, контроля и защиты используются датчики и устройства контроля и регулирования, усилители, микропроцессоры и исполнительные механизмы.



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал