Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Строение и функции белков






Это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота.

В составе большинства исследованных белков всех живых организмов было выявлено 20 аминокислот, участвующих в их построении.

При синтезе белковой молекулы разные аминокислоты присоединяются последовательно друг к другу, образуя цепочку, или полипептид (впоследствии она может сворачиваться в спираль или глобулу). Разнообразие белков определяется тем, какие аминокислоты, в каком количестве и в каком порядке входят в полипептидную цепь. Две молекулы, одинаковые по числу и составу аминокислот, но отличающиеся по порядку их расположения, представляют два разных белка. Не только виды, но и особи одного вида отличаются по целому ряду белков (с чем, например, связан феномен несовместимости при пересадке тканей и органов от одного животного другому).

Понятия «белок» и «пептид» близки между собой, однако между ними имеются и различия. Пептидами обычно называют олигопептиды, т. е. те, чья цепь содержит наибольшее число аминокислотных остатков (10-15), а белками называют пептиды, со­держащие большое число аминокислотных остатков (до нескольких тысяч) и имеющие определенную компактную пространственную структуру, так как длинная полипептидная цепь является энергетически невыгодным состоянием. Выделяются четыре уровня пространственной организации (структуры) бел­ков. Все структуры формируются в каналах эндоплазматической сети. При воздействии неблагоприятных факторов среды (облучение, повышенная температура, химические вещества) структуры белка могут разрушаться — происходит денатурация. Если этот процесс не затрагивает первичной структуры, он обратим, и по окончании воздействия молекула самопроизвольно восстанавливается. Первичная же структура невосстановима, так как формируется только на рибосомах при участии сложнейшего механизма биосинтеза белков. В зависи­мости от пространственной структуры белки бывают фибрил­лярные (в виде волокон) — строительные белки и глобулярные (в виде шара) — ферменты, антитела, некоторые гормоны и др.

 

Огромное разнообразие белков обеспечивает и множество функций, ими выполняемых, и многоообразие организмов.

Функции белков:

1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);

2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);

3) двигательная (миозин участвует в сокращении мышц);

4) запасная (альбумины яйца);

5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);

6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);

7) регуляторная (регуляторные белки определяют активность генов);

8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови)

9) белки-ферменты катализируют все химические реакции в организме;

10) энергетическая (при распаде 1 г белка выделяется 17 кдж энергии).

5. Строение и функции плазматической мембраны клетки. Транспорт веществ через мембрану.
Свойства клеточной мембраны
Кожа человека - это барьер, защищающий клетки, её мы и называем – клеточной мембраной. Она не позволяет компонентам клетки (цитоплазме) вытечь наружу. Главная задача клеточной мембраны - это удерживать клетку в целостности, при этом определять, что может попасть внутрь клетки, а что может оттуда выйти. Клетки любого организма имеют клеточные мембраны, даже клетки бактерий.
Строение клеточной мембраны

Состоит клеточная мембрана из бинарного ряда липидов. Располагаются молекулы липидов в два ряда и каждый ряд точно такой же, как предыдущий. Структуру молекулы липида - эти две части единого целого, как раз и отображают. Ещё эти две части единого целого называют – гидрофобной (водонепроницаемой) и гидрофильной секциями.

Гидрофобная секция не любит воду и подобных воде молекул, благодаря бинарному слою липидов выступает вроде защитного механизма.

Гидрофильная секция напротив способна притягивать воду и подобные воде молекулы, после чего выталкивает их наружу. В итоге получается такая базовая жидкая мозаичная модель.

Жидкостно-мозаичная модель

Открыли жидкую мозаичную модель клеточной мембраны в 1972 году. Эта модель демонстрирует структуру размещения протеинов внутри или на биполярном слое липидов. Размещаются протеины в хаотичном порядке, при этом получается мозаика протеинов. Протеины пересекающие бинарный ряд липидов, играют важную роль в транспортировке маленьких молекул через мембрану.


Функции клеточной мембраны

В результате того, что клеточная мембрана имеет среду полупроницаемую, то только некоторые виды самых мелких молекул способны проникнуть внутрь и наружу клетки сквозь мембрану. Называется данный процесс – диффузией. Но для того, чтобы такое действие произошло, мембрана должна быть вроде открытых дверей, то есть проницаемой, чтобы маленькая молекула смогла проникнуть сквозь неё. В том случае, когда мембрана непроницаема, маленькая молекула не имеет возможности проникнуть, здесь можно сказать «двери закрыты». Однако следует учесть, что молекула может переместиться только из переполненной области, в более свободную. Например, аминокислота желает пробраться через мембрану к самой клетке, при этом клеточная мембрана открыта для неё, это может произойти в том случае если концентрация аминокислоты за пределами клетки больше, чем в самой клетки. Только при таких условиях произойдёт процесс диффузии.

Следующий процесс, в котором главную роль играет клеточная мембрана - это так называемая помощь при транспортировке. Некоторые маленькие молекулы в мембране которых разместились протеины, способны помочь при пересечении мембраны. Вроде протеинового эскорта сквозь неё. Данный процесс напоминает процесс диффузии, так как протеиновая помощь при пересечении мембраны происходит, когда молекулы переходят из области высокой концентрации, с целью понизить её. Или же просто из области высокой концентрации молекул в область менее загруженную.

Опять же, молекулы способны пересекать клеточную мембрану способом активной транспортировки. Такой вид транспортировки представляет собой переход молекул из области с низкой концентрации в противоположную область с высокой концентрацией. Такой процесс транспортировки противоположный диффузии и посреднической транспортировки, осуществляется против правил концентрационной направленности. Для того чтобы такие передвижения осуществлять необходима концентрация энергии в форме аденозинтрифосфата (АТФ). АТФ- это нуклеотид, который состоит из аденина, рибозы и трёх остатков фосфорной кислоты. Он является универсальным накопителем и переносчиком химической энергии, известным для всех организмов и клеток. АТФ применяется для некоторых клеточных действий, начиная движениями и заканчивая репродукцией.
______________________________________________________________________________________________________________
В основе всех мембран клетки лежит двойной слой молекул липидов. Их гидрофобные «хвосты», состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. В состав мембран чаще всего входят фосфолипиды и гликолипиды (их молекулы наиболее полярны), а также жиры и жироподобные вещества (например, холестерин).Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.

 

К заряженным головкам липидов, с помощью электростатических взаимодействий прикрепляются белки. Мембранные белки выполняют структурные, каталитические и транспортные функции.В зависимости от расположения различают погруженные, периферические и пронизывающие белки. Погруженные белки слегка погружены в двойной слой липидов и являются ферментами, которые катализируют различные биохимические реакции. Периферические белки расположены на поверхности двойного слоя липидов. Они стабилизируют расположение погруженных белков-ферментов. Пронизывающие белки пронизывают мембрану насквозь и выполняют транспортные функции.

 

На наружной поверхности мембраны расположены молекулы углеводов (олигосахариды), которые выполняют рецепторные функции. Олигосахариды воспринимают факторы внешней среды клетки и обеспечивают ее реакцию, изменяют проницаемость мембраны, обеспечивают «распознавание» клеток одного типа и соединение их в ткани. Совокупность олигосахаридов на поверхности животной клетки называется гликокаликсом.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал