Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Структурные характеристики вариационного ряда распределения






Для характеристики величины варьирующего признака пользуются структурными величинами. Они бывают двух видов:

· Мода –наиболее часто встречающееся значение ряда (варианты). Мода применяется, например, при определении размера обуви, одежды, пользующейся наибольшим спросом у покупателей.

Для дискретных рядов мода – это вариант, имеющий наибольшую частоту.

Медиана – значение элемента, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения. Медиана делит ряд на две равные части.

Медиана – значение признака у средней единицы ранжированного ряда. Ранжированный ряд – ряд, расположенный в порядке возрастания или убывания единиц.

 

Понятие и виды ряда динамики.

Понятия и виды рядов динамики

Динамическими рядами в статистической науке называют статистические данные, характеризующие изменения явлений во времени, они строятся для выявления и изучения возникающих закономерностей в развитии явлений в различных сферах жизни общества.

В рядах динамики имеются два главных элемента:

показатель времени (t);

уровни развития изучаемого явления (у).

В рядах динамики в качестве показателей времени могут выступать определенные даты времени или отдельные периоды.

Ряды динамики подразделяются на моментные, интервальные и ряды средних величин.

Моментные ряды динамики отображают состояние исследуемых процессов на определенные даты времени.

Интервальные ряды динамики отображают итоги развития или функционирования исследуемых процессов за отдельные периоды времени.

Для характеристики процесса за определенный период рассчитывают средний уровень из всех членов динамического ряда.

Способы его расчета зависят от вида динамического ряда. Для интервальных рядов средняя рассчитывается по формуле средней арифметической, причем при равных интервалах применяется средняя арифметическая простая, а при неравных – средняя арифметическая взвешенная.

Для нахождения средних значений моментного ряда применяют среднюю хронологическую.

Средняя хронологическая моментного ряда равна сумме всех уровней ряда, поделенной на число членов ряда без одного, причем первый и последний члены ряда берутся в половинном размере.

Если интервалы между периодами не равны, то применяется средняя арифметическая взвешенная, а в качестве весов берутся отрезки времени между датами, к которым относятся парные средние смежных значений уровня.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал