Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Портфели из двух рискованных активов






Объединение в одном портфеле двух видов рискованных активов аналогично объединению рискованного актива с безрисковым; эта тема обсуждалась в разделе 12.2. Просмотрите еще раз табл. 12.1, рис. 12.1 и уравнения 12.1 и 12.2.) Если один из двух активов безрисковый, то стандартное отклонение его ожидаемой ставки доходности и корреляция с другим активом равны нулю. Если оба актива являются рискованны-, w, то так или иначе необходим анализ соотношения риск/доходность.

Формула для вычисления среднего значения ставки доходности любого портфеля, в котором w — это доля рискованного актива 1, а (1 - w) — это доля рискованного актива 2, имеет следующий вид:

Е(r) = wE(r1)+(l-w)E(r2) (12.4)

В свою очередь формула дисперсии такова:

s2 = s12 + (1 - w)2 s2 + 2w (1 - w) p s1 s2 (12.5)

Эти два уравнения можно сравнить с уравнениями соответственно 12.1 и 12.2. Сравнение 12.4 — это, по сути, уравнение 12.1, только вместо процентной ставки безрискового актива rr в него вставлена ожидаемая доходность рискованного актива 2, Е (r2) Уравнение 12.5 — это более общая форма уравнения 12.2. Если актив 2 безрисковой, то s 2 = 0 и уравнение 12.5 упрощается до вида уравнения 12.2. В табл. 12.2 сведены наши оценки распределения вероятности ставок доходности скованных активов 1 и 2. Обратите внимание: мы исходим из предположения, что коэффициент корреляции равен нулю = 0).

В табл. 12.3 и в рис. 12.3 показаны комбинации средних значений и стандартных отклонений доходностей, которые можно получить при объединении в одном портфеле рискованного актива 1 и рискованного актива 2. Точка S на рис. 12.3 соответствует портфелю, который состоит исключительно из рискованного актива 1, а точка R — пор тфелю, состоящему исключительно из рискованного актива 2.

Давайте покажем, как ожидаемые ставки доходности и стандартные отклонения в In 12.3 рассчитываются по формулам 12.4 и 12.5. Рассмотрим портфель С, который эит на 25% из рискованного актива 1 и на 75% — из рискованного актива 2.

Щ   Рискованный актив 1   Й.йЙйЙй.Йй?; Рискованный актив 2  
Среднее значение '/! - Э& гакдартное отклонение рйрреляция   0, 14 0, 20 0   0, 08 0, 15 0  

Соотношение риск/доходность для портфелей с двумя рискованными

eSllleSltESgeKe& eiBe

пь   Доля средств, вложенная в рискованный актив 1 (%)   Доля средств, вложенная в рискованный актив 2 (%)   Ожидаемая ставка доходности   Стандартное отклонение  
        0, 0800   0, 1500  
        0, 0950   0, 1231  
|ьная < я       0, 1016   0, 1200  
        0, 1100   0, 1250  
        0, 1400   0, 2000  

1одставив необходимые значения в уравнение 12.4, мы найдем, что ожидаемая ва доходности в точке С составит 0, 095 в год:

jE'(r)=0, 25 E(r,) +0, 75 E{r} =0, 25х0, 14 +0, 75х0, 08 =0, 095 ставив в уравнение 12.5 значение w, мы выясним, что стандартное отклонение

 

2 = W22 + (1 - w) (72 + 2w (1 - w) pO'iO'2

=0, 252x0, 22+0, 752x0, 152+0 =0, 01515625

о- =УО, 01515625 =0, 1231

Рис. 12.3. Кривая соотношения риск/доходность: только рискованные активы

Примечание. Предполагается, что £ '(" /•=0, 14, о-/=0, 20, E(r)=0, OS, crj=0, 15, /т=0.

Давайте с помощью табл. 12.3 исследуем кривую, соединяющую на рис. 12.3 точки R и S. Начнем с точки R и переместим часть наших капиталов из рискованного актива 2 в рискованный актив 1. При этом наблюдается не только повышение средней ставки доходности, но и снижение стандартного отклонения. Оно снижается до тех пор, пока мы не получим портфель, который на 36% состоит из инвестиций в рискованный актив 1 и на 64% — в рискованный актив 26.

Эта точка характеризует портфель с минимальной дисперсией (minimum-variance portfolio), состоящий из рискованного актива 1 и рискованного актива 2. Если в рискованный актив 1 инвестируется более 36% общего капитала, то стандартное отклонение портфеля увеличивается.

 

Контрольный вопрос
Каково среднее значение доходности и ее стандартное отклонение для портфеля, который на 60% состоит из рискованного актива 1 и на 40% — из рискованного актива 2, если их коэффициент корреляции равен 0, 1?.

6 Формула, описывающая долю рискованного актива 1, которая минимизирует дисперсию портфеля, выглядит следующим образом:

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал