![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Методы получения пен
Установлено, что образование сколько – нибудь устойчивой пены в чистой жидкости невозможно. Пену можно получить только в присутствии специального вещества стабилизатора, часто называемого пенообразователем. Основные стадии образования пены можно проследить на примере поведения нескольких пузырьков газа, всплывающих в воде, содержащей пенообразователь. В качестве пенообразователя возьмем ПАВ. Как только в таком растворе появятся пузырьки газа, на их поверхности начнут адсорбироваться молекулы ПАВ и образуют евоеобразную «шубу», состоящую из одного слоя молекул. Всплывая, каждый пузырек достигает поверхности жидкости, давит на нее, растягивает и образует полусферический купол. Молекулы пенообразователя из раствора устремляются к растущей поверхности, адсорбируются на ней, предотвращал разрыв пленки жидкости. Таким образом, пузырек оказывается окруженным оболочкой уже из двух монослоев пенообразователя, между которыми находится пленка жидкости. Адсорбционные слои ПАВ обеспечивают длительное существование возникающих пленок. Увеличение числа пузырьков на поверхности раствора приводит к их сближению, при этом форма пузырьков постепенно переходит из сферической в многогранную, а толщина жидких перегородок уменьшается, возникают тонкие жидкие пленки. В результате на поверхности раствора сначала образуется монослой газовых пузырьков, затем формируются последующие слои, что приводит к возникновению объемной пены, В результате вся жидкость превращается в пену. Пену, как любую дисперсную систему, можно получить двумя путями: из грубодисперсных систем, используя диспергационные методы, и из истинных растворов с помощью конденсационных методов.
ДИСПЕРГАЦИОННЫЕ МЕТОДЫ
Эти методы основаны на дроблении газа на пузырьки при подаче его в раствор пенообразователя. Обычно небольшие порции газа вводят в раствор и дробят их до мелких пузырьков. Легче всего этого добиться, продувая газ через трубку, опущенную в жидкость. В промышленности обычно используют следующие принципы. 1. Прохождение струй газа через жидкость в аэрационных и барботажных установках, в аппаратах с «пенным слоем», в пеногенераторах с сеткой, орошаемой раствором пенообразователя. 2. Действием движущихся устройств на жидкость или движущейся жидкости на преграду (в технических аппаратах с быстроходными мешалками; при взбивании, встряхивании, переливании растворов). 3. Эжектирование (франц. `еjection – выбрасывание) воздуха движущейся струей раствора в пеногенераторах. В настоящее время в технике пены готовят, в основном, диспергационными методами. Во всем мире непрерывно ведется разработка более эффективного оборудования.
КОНДЕНСАЦИОННЫЕ МЕТОДЫ В этих случаях будущая газовая фаза вначале присутствует в виде отдельных молекул, из которых затем образуются пузырьки. Конденсационный способ пенообразования можно осуществить четырьмя путями. Первый путь – изменить параметры физического состояния системы: • понижая давление пара над раствором; • повышая температуру раствора. Этот метод почти мгновенного вспенивания служит наглядной иллюстрацией закона: растворимость газа в жидкости увеличивается при повышении давления и понижении температуры. Если снизить давление и увеличить температуру, газ, растворенный в жидкости, сразу начнет выделяться из нее и, если жидкость содержит пенообразователь, образуется пена. Стойкость пены зависит от свойств и концентрации пенообразователя. Так, лимонад почти не содержит веществ, которые могут играть роль пенообразователей, поэтому, когда мы наливаем его из бутылки в стакан, возникающая на поверхности жидкости пена почти мгновенно разрушается. Другое дело пиво, которое содержит много пенообразователей. Аналогичная картина наблюдается при кипячении жидкостей. Если кипящая жидкость содержит пенообразователь, то на ее поверхности образуется пена, объем и стойкость которой зависят от природы и концентрации пенообразователя. Достаточно сравнить кипящую воду и кипящее молоко – обильная пена, возникающая над последним, переливается через край кастрюли, попадает на раскаленную плиту и превращается в аэрозоль, который образуется из продуктов горения пены. Второй путь – провести химическую реакцию, сопровождающуюся выделением газа. Примерами могут служить взаимодействие соды с кислотой, пероксида водорода с перманганатом калия, разложение карбоната аммония. Этот путь используется при приготовлении пресного теста, когда в качестве разрыхлителя используют питьевую соду NаНСО3 или карбонат аммония (NH4)2CO3
2NaHCO3 + 2Н+ = Na2CO3 + Н2О + CO2 .
Эти реакции протекают в кислой среде, поэтому в муку добавляют лимонную кислоту или смешивают с ней разрыхлитель, готовя так называемый пекарский порошок. Третий путь – использовать микробиологические процессы, сопровождающиеся выделением газов, чаще всего СО2., Таким путем получают дрожжевое тесто – под действием дрожжей идет спиртовое брожение гексоз:
Выделяющийся углекислый газ обусловливает разрыхление теста, оно увеличивается в объеме в несколько раз. При производстве пива углекислый газ также образуется в результате микробиологического процесса. Четвертый путь связан с электрохимическими процессами. При электролизе воды на катоде выделяется водород, а на аноде – кислород. За счет пузырьков газа в присутствии ПАВ, вводимого в раствор, образуется пена. Этот метод используется при электрофлотации. Конденсационные методы широко применяются в пищевой промышленности, при производстве пенопласт – масс, в бытовых огнетушителях, в технологии производства пенобетона.
|