Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Закон Ома для магнитной цепи.
Магнитное сопротивление и магнитная проводимость участка магнитной цепи. Закон Ома для магнитной цепи. По определению, падение магнитногонапряжения Um = Н1, но где S — площадь поперечного сечения участка. Следовательно, откуда Уравнение (14.14) называют законом Ома для магнитной цепи. Это уравнение устанавливает связь между падением магнитного напряжения Um и потоком Ф; Rm называют магнитным сопротивлением участка магнитной цепи. Величину, обратную магнитному сопротивлению, называют магнитной проводимостью: Из предыдущего известно, что вебер-амперная характеристика участка магнитной цепи в общем случае нелинейна. Следовательно, в общем случае Rm и Gm являются функциями магнитного потока (непостоянными величинами). Поэтому практически понятиями Rm и Gm при расчетах пользуются в тех случаях, когда магнитная цепь в целом или ее участок, для которых определяются Rm и Gm не насыщены. Чаще всего это бывает, когда в магнитной цепи имеется достаточно большой воздушный зазор, спрямляющий вебер-амперную характеристику магнитной цепи в целом или ее участка. Магнитное сопротивление участка цепи Rm можно сопоставить со статическим сопротивлением нелинейного резистора Rст (см. § 13.10 [1]) и так же, как последнее, Rm можно использовать при качественном рассмотрении различных вопросов, например вопроса об изменении потоков двух параллельных ветвей при изменении потока в неразветвленной части магнитной цепи (как в §13.2 [1] относительно электрической цепи). В заключение отметим, что если воспользоваться понятием магнитного сопротивления, то второй закон Кирхгофа (см. формулу (14.9)) для любого контура магнитной цепи, содержащей п участков, может быть записан так: Практически формулой (14.17) как расчетной удается воспользоваться, когда магнитная цепь не насыщена и Rmk не является функцией Фk. Если же имеет место насыщение, то Rmk является функцией Фk (т. е. неизвестно Rmk и Фk) и при использовании формулы (14.17) возникают известные трудности.
|