Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Кодирование звуковой информации. Теорема Котельникова.
Количество бит, используемых для записи номеров подуровней, называется глубиной кодирования звука. Если сравнить способы представления графической и звуковой информации, то импульсное кодирование звука соответствует растровому представлению изображений: - структура звука (в графике – изображения) не анализируется; - время (в графике – пространство) разбивается на небольшие области; - в пределах этих областей параметры звука (изображения) считаются постоянными. При сохранении импульсного представления звука достаточно единожды сохранить параметры оцифровки (глубину кодирования, частоту дискретизации и длительность звукового фрагмента), а затем сохранять только номера подуровней единым потоком. Увеличивая частоту дискретизации и глубину кодирования, можно более точно сохранить и впоследствии восстановить форму звукового сигнала. При этом улучшается субъективное качество оцифрованного звука, однако увеличивается объем сохраняемых данных. При цифровой записи звука в различных случаях используют разные значения частоты дискретизации и глубины кодирования. Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а, следовательно, может быть описан числовыми параметрами, то есть кодом. В природе звуковые сигналы имеют непрерывный спектр, то есть являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства – аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом, характерным для электронной музыки. В то же время, данный метод кодирования обеспечивает весьма компактный код, и потому он нашел применение еще в те годы, когда ресурсы средств вычислительной техники были явно недостаточны. Метод таблично-волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. Если говорить упрощенно, то можно сказать, что где-то в заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментов (хотя не только для них). В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, то качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов. В 1933 году советский ученый В.А. Котельников и независимо от него американский ученый Клод Шеннон сформулировали и доказали теорему о том, при каких условиях и как по дискретным значениям можно восстановить форму непрерывного сигнала. Эта теорема в России называется теоремой Котельникова, на Западе теоремой Найквиста-Шеннона; есть у нее и «нейтральной» название – теорема об отсчетах.
|