Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основные общезначимости алгебры предикатов
1.
2.
3.
4.
5.
Докажем формулу Так как единственная переменная в обеих частях эквиваленции связана, то обе они являются высказываниями. Поэтому для доказательства общезначимости формулы, покажем, что истинностные значения левой и правой части совпадают для любых одноместных предикатов Пусть Пусть теперь На множестве формул алгебры предикатов можно ввести отношение эквиваленции. Определение. Формула алгебры предикатов U называется эквивалентной формуле V (обозначается U º V), если их эквиваленция общезначима. Множество формул алгебры предикатов можно разбить на классы эквивалентности, включив в один класс эквивалентные между собой формулы. Каждой формуле U соответствует класс эквивалентности, который обозначается [ U ]. Определение. Формула алгебры предикатов называется приведенной, если она содержит операции утверждения всеобщности, существования, конъюнкции, дизъюнкции и операцию отрицания, относящуюся к атомарным формулам. Теорема 3.1. Каждый класс эквивалентности [ U ] может быть представлен приведенной формулой, т.е. для любой формулы U существует эквивалентная ей приведенная формула V. Для формул алгебры предикатов существуют предваренные нормальные формы. Определение. Предваренной нормальной формой (ПНФ) формулы алгебры предикатов называется формула, имеющая вид
где Будем говорить, что бескванторная формула U находится в ДНФ (КНФ), если U получается из формулы алгебры высказываний, находящейся в ДНФ (КНФ), подстановкой вместо пропозициональных переменных некоторых атомарных формул. ПНФ называется пренексной нормальной формой (ПННФ), если её матрица имеет вид ДНФ, и предклазуальной (пкнф), если – КНФ. Построим ПН-форму для формулы
Преобразуем формулу к приведенному виду
º º Так как для квантора " и операции Ú нет соответствующей эквивалентности, то переименуем связанную переменную y второго операнда дизъюнкции и вынесем кванторы по переменным, от которых не зависит другой операнд вперёд
º º В первом операнде конъюнкции последней формулы переменные x и y – связанные, а z – свободная, а во втором – наоборот. Переобозначив снова связанные переменные, получим
º º Полученная предваренная нормальная форма является предклазуальной. Использование формул алгебры предикатов в информационных технологиях породило необходимость преобразования формул в бескванторные, так как работать с такими формулами значительно легче, чем с формулами, содержащими кванторы. Основой такого преобразования являются аксиомы Сколема: 1) 2) Возможность удаления кванторов всеобщности непосредственно следует из определения операции, так как Формула U находится в клазуальной нормальной форме, если она получена из формулы, находящейся в предклазуальной нормальной форме, удалением кванторов существования в соответствии с аксиомами Сколема и последующим удалением всех кванторов всеобщности. Процесс такого преобразования называется сколемизацией. Так клазуальная нормальная форма для формулы предыдущего примера имеет вид
|