Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Проект по расшифровке генома человека
Международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать гены в человеческом геноме. Расшифровка генома человека – событие столь же важное в истории человечества, как открытие электричества, изобретение радио или создание компьютеров. В 1988 году Национальный институт здоровья США начал проект «Геном человека», возглавил который один из открывателей структуры ДНК нобелевский лауреат Джеймс Уотсон (рис. 10). Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Планировалось, что работа по определению нуклеотидной последовательности ДНК человека (секвенирование ДНК) должна окончиться в 2005-м году. Однако после первого года работы стало ясно, что скорости секвенирования ДНК очень низкие и для полного завершения работы такими темпами потребуется около 100 лет. Стало очевидно, что необходим поиск новых технологий секвенирования, создание новой вычислительной техники и оригинальных компьютерных программ. Это было невыполнимо в рамках отдельно взятого государства, и к программе подключились другие страны. Широкомасштабные координированные исследования стали проводиться под эгидой международной организации Human Genom Organisation (HUGO). С 1989 г. в проект включилась и Россия. Все хромосомы человека были поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы. В проекте оказались задействованы несколько тысяч ученых из 20 стран. В 1996 году были созданы всемирные банки данных по ДНК человека. Любая вновь определенная последовательность нуклеотидов размером более 1 тыс. оснований должна была быть обнародована через Интернет в течение суток после ее расшифровки, в противном случае статьи с этими данными в научные журналы не принимались. Любой специалист в мире мог воспользоваться этой информацией. К началу 1998 г. было секвенировано всего около 3% генома. В это время к работе неожиданно подключилась частная американская компания «Celera Genomics» под руководством Крега Вентера, которая объявила, что закончит свою работу на 4 года раньше международного консорциума ($300-миллионный проект). Началась беспримерная в науке гонка. Два коллектива работали независимо, не жалея сил, чтобы придти к финишу первыми. В ходе выполнения проекта «Геном человека» было разработано много новых методов исследования, большинство из которых значительно ускоряет и удешевляет работу по расшифровке ДНК. Эти методы анализа сейчас используются в медицине, криминалистике и т.д. В июне 2000 года два конкурирующих коллектива объединили свои данные, официально объявив о завершении работ. А в феврале 2001 года появились научные публикации чернового варианта структуры генома человека. Качество секвенирования достаточно высокое и предполагает всего 1 ошибку на 50 тыс.п.н. В 2000 году был выпущен рабочий черновик структуры генома, полный геном — в 2003 году, однако и сегодня дополнительный анализ некоторых участков ещё не закончен. Согласно имеющимся данным, фирма Celera в основном ориентировалась на геном 1 человека, о котором известно лишь, что это белый мужчина среднего возраста. Скорее всего, это был сам глава корпорации Крег Вентер. Международный консорциум использовал в своей работе материал не менее 7 людей различных рас. Хотя целью проекта по расшифровке генома человека является понимание строения генома человеческого вида, проект также фокусировался и на нескольких других организмах. Такие как, бактерии Escherichia coli, насекомые (дрозофила), и млекопитающие (мышь). Геном любого отдельно взятого организма (исключая однояйцовых близнецов и клонированных животных) уникален, поэтому определение последовательности человеческого генома в принципе должно включать в себя и секвенирование многочисленных вариаций каждого гена. Почти все цели, которые ставил перед собой проект, были достигнуты быстрее, чем предполагалось. Проект по расшифровке генома человека был закончен на два года раньше, чем планировалось. Проект поставил разумную, достижимую цель секвенирования 95 % ДНК. Исследователи не только достигли её, но и превзошли собственные предсказания, и смогли секвенировать 99, 99 % человеческой ДНК. Геном был разбит на небольшие участки, примерно по 150 000 пар нуклеотидов в длину. Эти куски затем встраивали в вектор, известный как Искусственная бактериальная хромосома (англ.) или BAC. Эти векторы созданы из бактериальных хромосом, измененных методами генной инженерии. Векторы, содержащие гены, затем можно вставлять в бактерии, где они копируются бактериальными механизмами репликации. Каждый из кусочков генома потом секвенировали раздельно методом «фрагментирования», и затем все полученные последовательности собирали воедино уже в виде компьютерного текста. Размеры полученных больших кусков ДНК, собираемых для воссоздания структуры целой хромосомы, составляли около 150 000 пар нуклеотидов. «Celera» было более быстрое и дешёвое секвенирование человеческого генома, чем в $3-миллиардном государственном проекте. «Геном человека» вошел в историю как один из самых трудоемких и дорогостоящих проектов. В целом на моент окончания проекта на проект было потрачено в сумме более 6 миллиардов долларов. «Celera» использовала более рискованную разновидность метода фрагментации генома, которую использовали ранее для секвенирования бактериальных геномов размером до шести миллионов пар нуклеотидов в длину, но никогда для чего-либо столь большого, как человеческий геном, состоящий из трёх миллиардов пар нуклеотидов.
Рис. 6.10. Джеймс Уотсон, один из группы ученых, открывших спираль ДНК, - основатель Международной программы по изучению генома человека
6.3.2. Результаты проекта «Геном человека»
1. В 2004 году исследователи из Международного Консорциума по Секвенированию Человеческого Генома (англ. International Human Genome Sequencing Consortium) (IHGSC) проекта «Геном человека» огласили новую оценку числа генов в человеческом геноме составившую от 20 до 25 тыс. Ранее предсказывалось от 3 до 40 тыс., а в начале проекта оценки доходили до 2 млн. Начальная оценка была более чем 100 тысяч генов. Число генов человека не намного превосходит число генов у более простых организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг, который позволяет получить несколько различных белковых цепочек с одного гена (рис. 6.11).
Рис. 6.11. Альтернативный сплайсинг
2. Анализ генома человека позволил выявить у него порядка в начале 40 тыс. генов, позже до 20-25 тыс. Самые короткие гены содержат всего 20 п.н. (гены эндорфинов, вызывающих ощущение удовольствия). Самый длинный ген, кодирующий один из белков мышц (миодистрофин), содержит порядка 2, 5 млн. п.н. 3.В кодировании белков принимает участие не более 1, 5 % хромосомной ДНК человека (т.е. генетические инструкции по формированию человеческого индивидуума занимают лишь 3 см на двухметровой молекуле ДНК человека).
4. Геном человека состоит из 24 хромосом и 3, 2 млрд. п.н. В геноме женщин содержится лишь 23 хромосомы из 24-х, и все они представлены в соматических клетках двумя экземплярами. У мужчин в клетках содержится полная Энциклопедия человека, все 24 хромосомы, но две из них (хромосомы X и Y) существуют в единичных экземплярах. Разные хромосомы сильно отличаются друг от друга по числу и свойствам генов (в первой, самой большой, хромосоме содержится 263 млн. п.н., составляющих 2237 гена, а в 21 хромосоме – 50 млн.п.н. и 82 гена).
5. Большинство человеческих генов имеют множественные экзоныиинтроны, которые часто оказываются значительно более длинными, чем граничные экзоны в гене. Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки (рис. 12).
Рис. 6.12. Экзон-интронная структура ДНК у эукариот
6. В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию гена. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры).
7. Согласно последним подсчётам, эухроматин, богатый генами и активно экспрессирующихся участков хромосом, составляет примерно 93.5% от всего генома. Оставшиеся же 6.5% приходятся на гетерохроматин – эти участки хромосом бедны генами и содержат большое количество повторов, которые представляют серьезные трудности для ученых, пытающихся прочесть их последовательность.
8. Как у людей имеются семьи, так и гены объединяют в семейства по их схожести. В геноме человека присутствуют около 1, 5 тыс. таких семейств. Причем только около сотни из них специфичны для человека и позвоночных животных. Основная же масса генных семейств имеется как у человека, так и у дождевого червя. Разные гены одного семейства возникали в ходе эволюции из одного гена-предшественника как следствие мутаций. «Родственные» гены чаще всего выполняют сходную функцию. Например, геном человека имеет около 1 000 генов-рецепторов обоняния.
9. Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1, 5 % генома. Не учитывая известные регуляторные последовательности в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, на текущий момент не выяснена. Фактически эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся: - повторы - транспозоны (прыгающие гены) - псевдогены - это гены, утратившие способность к экспрессии. Перед их названием ставят греческую букву y. He совсем ясно, зачем геному нужны такие гены, почему он сохранил их в эволюции и не избавился от них.
10. В геноме человека имеется около 20 000 таких псевдогенов. В частности, в огромной семействе генов обоняния около 60% являются псевдогенами. Считается, что массивная потеря функциональных генов произошла за последние 10 млн. лет в связи со снижением роли обоняния у человека по сравнению с другими млекопитающими. 11. Число генов, ассоциируемых с различными болезнями больше всего в Х хромосоме – 208; в 1 – 157; и в 11 – 135. Меньше всего таких генов в Y – всего 3. Тем не менее, только совокупность всех хромосом обеспечивает клетки полной информацией, позволяющей человеку нормально развиваться и жить. В отсутствие любой из пар хромосом жизнь конкретного индивидуума становится невозможной. При потере по каким-либо причинам только одной из пары хромосом состояние человека сильно отличается от нормы. Например, частичная моносомия 5-ой хромосомы приводит к синдрому кошачьего крика. У детей с этой аномалией отмечается необычный плач, что обусловлено изменением гортани, а также черепа и лица. В клетках человека также имеется ДНК, расположенная не в хромосомах, а в митохондриях. Это тоже часть генома человека, называемая М-хромосомой. В отличие от ядерного генома митохондриальные гены располагаются компактно, как в геноме бактерий, и имеют свой собственный генетический код (своеобразный «генетический жаргон»). МитДНК ответственна в клетке за синтез всего лишь нескольких белков. Но эти белки очень важны для клетки, поскольку участвуют в обеспечении клетки энергией. Предполагают, что митохондрии появились в клетках эукариот в результате симбиоза высших организмов с аэробными бактериями. МитДНК передается из поколения в поколение только по женской линии. При оплодотворении в яйцо проникает сперматозоид с набором отцовских хромосом, но без отцовских митохондрий. Только яйцеклетка предоставляет зародышу свою митДНК. Поэтому митДНК удобно использовать для определения степени родства как внутри вида, так и между различными таксонами.
12. Одной из целей исследования генома человека являлось построение точной и подробной карты всех хромосом. Генетическая карта представляет собой схему, описывающую порядок расположения на хромосоме генов и других генетических элементов (снипсы-повторы-гены).
13. Плотность расположения генов в хромосомах сильно различается. Средняя плотности составляет около 10 генов на 1 млн.п.н. Однако в хромосоме 19 плотность составляет 20 генов, а в Y-хромосоме — всего 1, 5 гена на млн. Если сравнить плотность генов с плотностью расселения людей, то Y-хромосома напоминает нашу Сибирь, а хромосома 19 — Европейскую часть России. Плотность расположения генов падает по мере эволюционного усложнения организмов. Для сравнения: в геноме бактерий содержится свыше 1000 генов на 1, 0 млн. и. н., у дрожжей около 450 генов на 1, 0 млн. п. н., а у червя С. elegans - около 200.
14. Около 20 % генов человека функционируют во всех типах клеток человека. Остальные же гены работают только в определенных тканях и органах. Например, глобиновые гены экспрессируются только в клетках крови, поскольку основная их функция – обеспечивать перенос кислорода. Примером высочайшей специализации генов служат обонятельные гены. В каждой клетке органа обоняния человека – обонятельной луковице - работает только 1 ген из 1000 возможных. Сильнейшее недоумение ученых вызвал тот факт, что некоторые из этих генов, кроме обонятельной луковицы, активизируются еще в одном типе клеток – сперматозоидах. Как это связано с восприятием запаха, пока не совсем ясно.
15. Оказалось, что более 1000 генов «родились» совсем недавно (по эволюционным меркам, конечно) – в процессе удвоения исходного гена и последующего независимого развития дочернего гена и гена-родителя. А чуть меньше 40 генов недавно «умерли», накопив мутации, сделавшие их совершенно неактивными.
|