Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Задача двох тіл.
Рассмотрим задачу о движении двух взаимодействующих только между собой материальных точек. Вследствие однородности и изотропности пространства потенциальная энергия взаимодействия может зависеть только от расстояния между точками. Функция Лагранжа для данной задачи запишется в форме (4.1) Рассматриваемая система материальных точек замкнута. Поэтому ее импульс сохраняется, и система отсчета центра инерции является инерциальной системой отсчета. Задачу будем решать в системе отсчета центра инерции. Начало координат поместим в центр инерции, что дает (4.2) Введем радиус-вектор , направленный от первой материальной точки ко второй: (4.3). С помощью формул (4.2) и (4.3) выразим векторы и через вектор : ; (4.4) Потенциальная энергия теперь зависит только от величины вектора . Выражая с помощью формул (4.4) скорости и через вектор , кинетическую энергию системы двух материальных точек можно записать как кинетическую энергию одной материальной точки массой (4.5) Выраженная через радиус-вектор функция Лагранжа (4.1) запишется в форме (4.6) Функция Лагранжа (4.6) — это функция Лагранжа одной материальной точки массы , движущейся в потенциальном поле, зависящем только от расстояния до начала координат. Такое потенциальное поле называется Центральным полем. Сила, действующая в центральном поле на материальную точку, направлена по прямой, соединяющей материальную точку с центром поля: (4.7) Масса , определенная согласно (4.5), называется Приведенной массой. Следовательно, решение задачи двух тел эквивалентно решению задачи о движении в центральном поле материальной точки с массой, равной приведенной массе. После решения задачи о движении материальной точки в центральном поле, координаты двух тел можно получить при помощи формул (4.4).
|