Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Интегральный признак Коши ⇐ ПредыдущаяСтр 2 из 2
Теорема 8.6. Если члены знакоположительного ряда , являющиеся значениями функции целочисленного аргумента , монотонно убывают и стремятся к нулю , то: 1) если сходится, то и ряд сходится; 2) если расходится, то и ряд расходится. Д о к о з а т е л ь с т в о. В прямоугольной декартовой системе координат непрерывная кривая проходит через точки и ограничивает сверху криволинейную трапецию ABCD. Площадь этой криволинейной трапеции равняется .Построим две ступенчатые фигуры с угловыми точками . Эти ступенчатые фигуры состоят из прямоугольников, основания которых равняются единице, а высоты значениям . Найдем площади этих фигур. , , где n -я частичная сумма ряда. Площади этих ступенчатых фигур ограничивают площадь криволинейной трапеции ABCD снизу и сверху .Рассмотрим левую часть этого неравенства . При неограниченном возрастании числа n членов ряда частичные суммы ряда монотонно возрастают, так как ряд знакоположительный. При этом интеграл также возрастает и ограничен величиной интеграла . Поэтому , т. е. последовательность частичных сумм ограничена. По теореме Вейерштрасса существует предел . Следовательно, ряд сходится. Рассмотрим правую часть неравенства .По условию теоремы . Если неограниченно возрастает, то и предел частичных сумм неограниченно возрастает и, следовательно, ряд расходится.
|