Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основы аналитической механики
Обобщенные координаты - независимые величины, заданием которых однозначно определяется положение всех точек механической системы. Для голономной несвободной механической системы число обобщенных координат равно числу степеней свободы. Подавляющее число механизмов, используемых в технике, является системами с одной степенью свободы, например: рычаг, лебедка, кривошипно-шатунный механизм, планетарный механизм, тело, вращающееся вокруг неподвижной оси и т.п. Две степени свободы имеет центробежный регулятор. Три степени свободы имеет: свободная материальная точка; несвободное сферически движущееся тело; тело, совершающее плоское движение. Шесть степеней свободы (наибольшее число степеней свободы) имеет свободное твердое тело в общем случае его движения. Голономная несвободная механическая система - несвободная механическая система, перемещение которой в пространстве ограничено голономными (интегрируемыми) связями. Голономная интегрируемая связь - связь, описываемая уравнениями в конечной форме или интегрируемыми дифференциальными уравнениями. Связь называется двусторонней, если накладываемые ее на координаты точки ограничения выражаются в форме равенств, определяющих поверхности, на которых должна находиться эта точка. Двусторонняя связь препятствует перемещению точки в двух противоположных направлениях. Ограничения, накладываемые на координаты точки односторонней связью, выражаются неравенствами. Односторонняя связь препятствует перемещению точки тела лишь в одном направлении. Принцип освобождаемости от связей позволяет рассматривать движение несвободной материальной точки как движение свободной точки под действием задаваемых сил и реакций связей. Возможные (виртуальные) перемещения - воображаемые элементарные (линейные или угловые, например: Для стационарной (с постоянными по времени связями) механической системы действительные перемещения входят в число ее возможных перемещений, т.е. являются их частными случаями. Абсолютно гладкая поверхность - научная абстракция, модель, которой заменяется реальная шероховатая поверхность, в результате чего не принимается во внимание трение. В действительности все поверхности трения достаточно шероховаты и трение имеет место даже при наличии смазки поверхностей трения. В связи с этим силу трения - касательную составляющую полной реакции поверхности как связи - переносят в группу активных (задаваемых) сил, делая тем самым связь условно идеальной, что позволяет применять для решения ряда задач принцип возможных перемещений. Возможные (виртуальные) перемещения системы ( Число независимых между собою возможных перемещений системы называется числом степеней свободы этой системы. Например. шар на плоскости может перемещаться в любом направлении, но любое его возможное перемещение может быть получено как геометрическая сумма двух перемещений вдоль двух взаимно перпендикулярных осей. Свободное твердое тело имеет 6 степеней свободы. Возможная (виртуальная) работа Связи являются идеальными, если сумма элементарных работ реакций этих связей при любом возможном перемещении системы равна нулю, т.е. Принцип возможных перемещений: для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении была равна нулю. Принцип возможных перемещений дает в общей форме условия равновесия для любой механической системы, дает общий метод решения задач статики. Если система имеет несколько степеней свободы, то уравнение принципа возможных перемещений составляют для каждого из независимого перемещений в отдельности, т.е. будет столько уравнений, сколько система имеет степеней свободы. Общее уравнение динамики Уравнения Лагранжа 2-го рода: Т = Т( Для вычисления обобщенной силы, например Q1, задаем возможное перемещение, при котором все вариации обобщенных координат, кроме
Если силы, действующие на систему, потенциальные (консервативные) (например, силы тяжести, силы упругости), то Вводится функция Лагранжа: L = T – П, тогда
|