Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
IV этап.
Учет результатов. Выдача ответа Цель: идентификация исследуемой культуры (определение вида, биовара, серовара) Тема 2: Физиология бактерий. Питание, дыхание, размножение, метаболизм и ферментные системы бактерий. Бактериологический метод диагностики инфекционных заболеваний (2-й день). Цель занятия: знать механизмы размножения и роста бактерий; классификация бактерий по типу питания, биологического окисления; сущность процессов брожения; ферментные системы микроорганизмов. уметь дифференцировать бактерии по культуральным и морфологическим признакам; пересевать чистую культуру на среду накопления (скошенный МПА); производить дезинфекцию кожных покровов; определить микробную обсемененность кожных покровов. Задание на дом: I. Вопросы для самоподготовки: 1. Метаболизм микроорганизмов 2. Ферментные системы микроорганизмов 3. Классификация бактерий по типу питания. Источники углерода, азота, макро- и микроэлементов, ростовых факторов для микробов 4. Механизмы питания бактерий 5. Классификация микроорганизмов в зависимости от источника энергии 6. Виды биологического окисления. Классификация бактерий по типу дыхания - биологического окисления 7. Брожение и его виды 8. Условия культивирования бактерий 9. Рост и размножение бактерий. Фазы размножения бактерий 10. Бактериологический метод исследования. Проведение 2 этапа бактериологического метода выделения аэробов. Культуральные свойства бактерий II. Базовый текст 1. Метаболизм микроорганизмов Физиология микробов - раздел микробиологии, изучающий процессы жизнедеятельности: питание, дыхание, обмен веществ, движение, рост, размножение и взаимодействие микробов с окружающей средой. Для роста и размножения микроорганизмы нуждаются в веществах, используемых для построения структурных компонентов клетки и получения энергии. Метаболизм (т.е. обмен веществ и энергии) - совокупность реакций жизнеобеспечения, происходящих в микробной клетке при участии биологических катализаторов - ферментов. Ферменты - высокоактивные биологические молекулы, способные к многократному взаимодействию с определенным субстратом. Питательные вещества, поступающие в клетку и участвующие в реакциях метаболизма, называются субстратом и являются точкой приложения или объектом действия ферментов. Субстраты, в результате последовательных ферментативных реакций, расщепляются и образуются метаболиты - промежуточные или конечные продукты метаболизма. Метаболизм включает два взаимосвязанных процесса: катаболизм, или энергетический метаболизм и анаболизм, или конструктивный метаболизм. Катаболизм связан с окислительно-восстановительными реакциями. В процессе катаболизма (энергетического обмена) происходит расщепление крупных молекул до более простых соединений, при этом рвутся химические связи и освободившаяся энергия этих связей идет на процессы жизнедеятельности или запасается в клетке в виде фосфосодержащих органических соединений (АТФ, УДФ, волютин и т.п.). Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот) - осмотрофы, или в виде отдельных частиц - фаготрофы. Анаболизм (конструктивный обмен) включает реакции, обеспечивающие синтез макромолекул органических соединений, из которых строится тело микробной клетки, и протекает с поглощением энергии. Взаимосвязь катаболизма и анаболизма проявляется еще и в том, что на определенных этапах метаболизма образуются промежуточные продукты, которые могут быть использованы в обоих процессах. Эта часть метаболизма называется амфиболизмом. а промежуточные продукты - амфиболиты. Особенности метаболизма у бактерий состоят в том, что: • его интенсивность имеет достаточно высокий уровень, что возможно обусловлено гораздо большим соотношением поверхности к единице массы, чем у многоклеточных; • процессы диссимиляции преобладают над процессами ассимиляции; • субстратный спектр потребляемых бактериями веществ очень широк — от углекислого газа, азота, нитритов, нитратов до органических соединений, включая антропогенные вещества — загрязнители окружающей среды (обеспечивая тем самым процессы ее самоочищения); • бактерии имеют очень широкий набор различных ферментов — это также способствует высокой интенсивности метаболических процессов и широте субстратного спектра. 2. Ферментные системы микроорганизмов В основе метаболических реакций, протекающих в клетке, лежит деятельность ферментов – самого крупного и высокоспециализированного класса белков. Микроорганизмы синтезируют самые разнообразные ферменты, которые относятся к шести известным классам: оксидоредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы (табл. 12). Их значение в жизнедеятельности клетки: · Гидролазы – гидролитический катализ белков, жиров и углеводов · Оксидоредуктазы – участие в окислительно-восстановительных процессах · Трансферазы – перенос определенных радикалов · Лиазы – участие в соединении двух молекул · Изомеразы – участие в изомеризации органических соединений · Лигазы – участие в реакциях присоединения и отрыва групп Таблица 12. Классы ферментов
Ферментный состав любого микроорганизма определяется его геномом и является достаточно постоянным признаком. Многие ферменты связаны со структурными компонентами микробной клетки и определяют интенсивность процессов биосинтеза, идущего в них. Так, например, в ЦПМ находятся окислительно-восстановительные ферменты, участвующие в дыхании. В клеточной стенке идет синтез ферментов, связанных с делением клетки и ее аутолизом. Основная часть ферментов локализована в цитоплазме. Ферменты продуцируются самой микробной клеткой и по месту, выполняемой им функции разделяются на экзоферменты и эндоферменты. Экзоферменты — ферменты бактерий, выделяемые во внешнюю среду и действующие на субстрат вне клетки (протеазы, полисахаридазы, олигосахаридазы). Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь источниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепляют крупные молекулы пептидов, полисахаридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализованы в периплазматическом пространстве бактериальной клетки. Они участвуют в процессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых случаях — для видов. Поэтому определением спектра ферментативной активности пользуются при установлении таксономического положения бактерий. Наличие экзоферментов можно определить при помощи дифференциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред. Эндоферменты — ферменты бактерий, действующие на субстраты внутри клетки (расщепляющие аминокислоты, моносахара и др.). По назначению экзоферменты следует разделить на следующие группы: · Ферменты, обеспечивающие выполнение своих физиологических процессов, связанных с ростом и размножением микробной культуры. · Ферменты, обеспечивающие микробной клетке защитные свойства. Например, ферменты, инактивирующие антибиотики. · Ферменты патогенности. Эта группа ферментов продуцируется, как правило, патогенными микроорганизмами. Выделяют ферменты, обеспечивающие микробной клетке защиту от неспецифических факторов защиты макроорганизма (ферменты инвазии - нейраминидаза, гиалуронидаза, коллагеназа), а также ферменты, активизирующие работу биологически активных соединений клеток макроорганизма и приводящие ее к гибели. Это ферменты агрессии (эксфолиатины способны модифицировать гормоны или протеазы, разрушающие структуры клеток инфицированного организма и т.д.). Синтез ферментов генетически детерминирован, но регуляция их синтеза идет за счет прямой и обратной связи, т. е. для одних — репрессируется, а для других — индуцируется субстратом. Ферменты разделяют на конститутивные (ферменты гликолиза) – это группа ферментов, синтез которых не зависит от наличия субстрата в среде, он имеет место всегда, и эти ферменты всегда содержатся в микробных клетках в определенных концентрациях. Ферменты, синтез которых зависит от наличия соответствующего субстрата в среде (бета-галактозидаза, бета-лактамаза), называются индуцибельными или адаптивными (ферменты, которые бактерии продуцируют в определенных условиях.В отсутствии субстрата они находятся в клетках в следовых концентрациях. Одной из особенностей ферментов микроорганизмов является преобладание адаптивных ферментов над конститутивными, что связано как с малым объемом цитоплазмы, так и с их ролью главного механизма адаптации к меняющимся условиям внешней среды. Индуцибельные ферменты синтезируются микробной клеткой только в ответ на наличие в среде определенного субстрата.
|