Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Система осморегуляции
Осмосом называется процесс, при котором происходит спонтанное движение молекул растворителя из раствора с низкой концентрацией в раствор с высокой концентрацией через мембрану, проницаемую только для растворителя. Причем процесс этот продолжается до тех пор, пока не произойдет уравновешивание концентраций по обе стороны мембраны. Давление, с которым растворитель проникает (" засасывается") через мембрану, называется осмотическим. Таким образом, раствор, находящийся во флаконе, осмотическим давлением не обладает. Оно возникает только в том случае, если имеется полупроницаемая мембрана и осмотический градиент по обе стороны ее. Поскольку по мере перемещения растворителя осмотический градиент уменьшается, осмотическое давление есть величина непостоянная. Как и любое другое давление, осмотическое давление измеряется в атмосферах, миллиметрах ртутного либо сантиметрах водного столба. Например, на уровне капиллярной сети давление плазмы крови в норме составляет в среднем 6, 62 атм (от 6, 47 до 6, 72 атм). Осмос не следует путать с диффузией - пассивным перемещением молекул или ионов растворенного вещества через проницаемую для них мембрану из раствора с большей концентрацией в раствор с низкой концентрацией. Коллоидно-осмотическое давление - часть осмотического давления плазмы, которая создается частицами с большим молекулярным весом (более 30000 Д), преимущественно белками, с трудом проникающими через стенку капилляров, которая играет в организме роль полупроницаемой мембраны. Поэтому коллоидно-осмотическое давление плазмы еще называют онкотическим. Осмотическое и коллоидно-осмотическое давление часто путают с концентрационными показателями осмотического состояния - осмолярностью и осмоляльностью, которые отражают соотношение растворителя (т.е. плазмы или воды) и растворенных веществ (т.е. электролитов, белков, жиров, углеводов, микроэлементов, гормонов, энзимов и витаминов). Осмолярность представляет собой суммарную концентрацию осмотически активных частиц в единице объема растворителя, например, в 1 л (мосм/л), а осмоляльность - в единице массы растворителя, например, в 1 кг воды (мосм/кг Н2О). Известно, что в биологических жидкостях (плазма, моча и др.) кроме воды обязательно имеются мелкодисперстные вещества. Причем, чем большую часть в литре плазмы занимают белки, липиды и им подобные вещества, тем меньше места останется для свободной воды. Поэтому, чтобы избежать влияния величины осадка (гиперлипидемия, гиперпротеинемия и т.п.) на показатель концентрации осмотически активных веществ, рекомендуется измерять не осмолярность, а осмоляльность. Поскольку среднее содержание воды в плазме крови обычно составляет примерно 92%, осмоляльность ее будет равна осмолярности, умноженной на 0, 92. Величина осмоляльности зависит только от количества частиц, растворенных в единице объема растворителя, а не от их природы, размера, массы и валентности. За единицу осмоляльности принята осмоляльность раствора, содержащего 1 моль растворенного вещества. Сделано это потому, что в 1 моле всегда находится одно и то же число молекул (число Авогадро - 6, 02·1023). Другими словами, одномоляльный раствор содержит 6, 02·1023 частиц на каждый кг воды. Установлено, что внесение в раствор вещества в таком количестве снижает точку замерзания этого раствора на 1, 86о С. На данном явлении и основан принцип осмометрии. Электронное устройство, позволяющее измерять с высокой точностью температуру замерзания биологических жидкостей, называется криоскопом или осмометром. В связи с тем, что осмоляльность биологических жидкостей не очень велика, для удобства принято пользоваться тысячной долей моля (ммоль). Для того же, чтобы акцентировать внимание на том, что речь идет об осмотически активных частицах, к слову " ммоль" добавляют частицу " ос" (мосмоль/кг Н2О). Следовательно, понятие " осмоляльность" тождественно понятию " моляльность", а 1 мосмоль, также как и 1 ммоль, соответствует содержанию 6, 02·1019 частиц в каждом кг растворителя. В системе СИ " мосмоль" как самостоятельная единица, отсутствует, поэтому иногда в научных трудах для отражения осмоляльности используют выражение ммоль/кг Н2О. Осмоляльность плазмы и ликвора в норме составляет 285 + 10, слюны - 100-200, желудочного сока - 160-340, желчи - 280-300, мочи - 600-1500 мосмоль/кг Н2О. Вклад различных веществ в осмоляльность неодинаков. Например, в плазме 98% ее обеспечивается электролитами, в том числе почти 50% - натрием. Из других имеющихся в крови физиологических частиц наибольшей осмотической активностью (кроме электролитов) обладают глюкоза и мочевина. Именно от них и от натрия главным образом и зависит величина осмоляльности плазмы, так как концентрация в крови ионов К+, РО42+, SО42+, Са2+, Мg2+, креатинина, мочевой кислоты и других веществ мала. Высокомолекулярные белки и липиды также имеют низкую моляльную концентрацию, поэтому на их долю приходится всего 1% (1, 5-2, 5 мосмоль/кг Н2О) осмоляльности. С учетом роли различных веществ в осмоляльности плазмы предложено большое количество формул для ее расчета. Наибольшее распространение из них получили формулы Дорварта (3.43) и Мансбергера (3.44):
(3.45), (3.46 ), (концентрация веществ представлена в ммоль/л).
В плазме хлорид натрия диссоциирован не полностью, а на 93%, поэтому осмотический коэффициент натрия с анионами меньше их концентрации. В связи с этим, если принять число анионов равным числу катионов, то концентрацию натрия надо умножать не на 2, а на 1, 86. Цифры 9 и 5 - эмпирически найденный коэффициент, отражающий осмотическую концентрацию других осмотически активных частиц в норме. Вычитая значение осмоляльности, рассчитанной с помощью одной из этих формул, из результата, полученного при измерении прибором, можно определить так называемую дискриминанту осмоляльности. Она будет тем больше, чем существеннее роль так называемых " остаточных анионов" (молочной, пировиноградной, уксусной и других органических кислот, кетонов, этилового спирта, различных аминокислот, полипептидных продуктов протеолиза и пр.). В процессе анаболизма между собой соединяется большое количество мелких частиц, что приводит к уменьшению осмоляльности. Обратный процесс (катаболизм), сопровождающийся распадом больших молекул на мелкие частицы, вызывает повышение осмоляльности. Следует, однако, учесть, что не все крупномолекулярные вещества при распаде образуют осмотически активные частицы. Например, катаболизм жиров и глицерина, за исключением СО2, осмотически активных веществ не образует. Наоборот, при этом появляется " метаболическая вода", которая снижает осмоляльность. В результате обменно-диффузионных процессов, постоянно идущих между сосудистым и интерстициальным пространствами, имеющиеся в крови натрий, глюкоза и мочевина равномерно распределяются по обе стороны капиллярной стенки. Вследствие этого они не играют существенной роли в создании осмотического давления плазмы, и поэтому по осмоляльности нельзя судить об осмосе и осмотическом давлении, возникающих на уровне стенки капилляров. В то же время натрий, являясь основным внеклеточным катионом, при обычных условиях обладает относительно низкой способностью проникать через клеточную мембрану. Миграция глюкозы и мочевины в клетку также затруднена, хотя и в меньшей степени, чем натрия. Все это дает основание по осмоляльности плазмы судить об осмоляльности интерстициальной жидкости и, соответственно, о степени осмотического воздействия, испытываемого клетками. Другими словами, чем больше осмоляльность плазмы, тем (при сохранении нормального функционирования калий-натриевого насоса) больше должна быть осмотическая нагрузка на клеточную мембрану. Однако лишь сопоставление осмотической концентрации по разные стороны гемато-энцефалического барьера (интерстициальная жидкость - ликвор) позволяет оценить направленность осмоса. Поддержание осмоляльности на нормальном уровне осуществляет система осморегуляции с весьма сложными центральными и периферическими механизмами. Эта система включает афферентное звено в виде осморецепторов - чувствительных образований, обращенных во внутреннюю среду и реагирующих на изменение концентрации в ней растворенных частиц. Импульсы от осморецепторов передаются в гипоталамический центр осморегуляции (супраоптическое ядро гипоталамуса), а оттуда - к исполнительным органам (почки, потовые железы, желудочно-кишечный тракт). Процесс осморегуляции состоит из двух этапов. Сначала происходит ряд изменений, направленных на восстановление осмоляльности внеклеточной жидкости: буферирование катионов и анионов белками крови и эритроцитами, миграция воды и ионов между плазмой и эритроцитами, ускорение обменно-диффузионных процессов между кровью и тканями. Однако они не ликвидируют полностью осмотический сдвиг, а перемещают его из сосудистого пространства в интерстициальное. Гиперосмия, возникающая в интерстиции, вызывает развитие приспособительных реакций, способных защитить клетки от небольшого осмотического воздействия. Это проявляется не только в демпфировании соединительной тканью самих клеточных структур, но и в способности организма уменьшить величину осмотического сдвига за счет мобилизации жидкости из других, менее важных областей, например, желудочно-кишечного тракта. И только тогда, когда интенсивность осмотического воздействия превышает возможности защиты, возникает угроза потери воды клетками и происходит включение осморегулирующего рефлекса (изменение реабсорбции воды и натрийуреза). Он играет ведущую роль в окончательном восстановлении осмотического равновесия и при развитии гипоосмии. Следует акцентировать внимание на следующих механизмах поддержания осмобаланса. Первый заключается в изменении работы почек. Известно, что ими экскретируются не только натрий, но и вода, а также продукты распада белков и аминокислот (один из основных источников образования осмотически активных частиц). Первичная моча, образованная путем ультрафильтрации крови гломерулами нефрона, приблизительно изоосмотична плазме. Во время прохождения через нефрон состав первичной мочи меняется. При этом, в зависимости от ситуации, почки сохраняют либо удаляют воду и осмотически активные вещества. Считают, что выделение с мочой осмотически активных веществ достаточно точно отражает степень угнетения почечных функций. Если у человека массой 70 кг, получающего с пищей 2000 ккал, суточная осмотическая " продукция" (совокупное выделение почками осмотически активных веществ) составляет 800 мосмоль, то сразу после оперативного вмешательства величина ее значительно уменьшается. Отношение осмоляльности мочи к плазме (осмотический концентрационный индекс) признан многими авторами одним из наиболее надежных показателей нарушения функции почек. Снижение его ниже 1, 0, особенно в сочетании с олигурией, некорригируемой гиперосмоляльностью, соответственно гипернатриемией и гиперазотемией свидетельствует о развитии почечной недостаточности и является прогностически неблагоприятным признаком. Второй механизм заключается в изменении работы потовых желез. Образующийся в их проксимальных отделах первичный пот обычно гипотоничен по отношению к плазме. Усиление секреции пота приводит к увеличению потери свободной воды и сопровождается нарастанием осмоляльности. Третий механизм состоит в изменении работы гормональной системы. Установлено, что гормоны оказывают свое действие посредством влияния на процессы анаболизма и катаболизма, сопровождающиеся активацией или уменьшением синтеза свободной воды и осмотически активных веществ. Естесственно, что такое влияние сказывается не сразу, а через какое-то время. Установлено, например, что инсулин играет важную роль не только в углеводном, но и в белковом, и в жировом обмене. Стимулируя процессы синтеза (анаболизма), он способствует снижению осмоляльности. Для стероидных гормонов характерен противоположный эффект. В частности, кортизон, вызывая усиление распада белков и, соответственно, увеличение числа осмотических частиц, повышает осмоляльность. Катехоламины усиливают окисление жиров и гликогена, что приводит к образованию свободной воды и углекислоты. СО2 выделяется легкими, а образовавшаяся вода снижает осмоляльность. Выделение АДГ приводит к реабсорбции в канальцах почек воды, а альдостерона - натрия. Гиперпаратироидизм ведет к увеличению диуреза и жажде. Тем не менее, следует констатировать, что роль гормональной системы в поддержании изоосмии до конца не изучена. Таким образом, осмотическое равновесие в организме обеспечивается сложным комплексом реакций, в которых активное участие принимает как центральная нервная система, так и система гормональной регуляции. Вследствие этого осмоляльность является одной из наиболее жестких констант организма. Определяя изменение концентрации осмотически активных веществ во внеклеточной жидкости в ответ на введение осмотически активного вещества, можно в какой-то мере судить о степени напряжения всей осморегулирующей системы. При достаточных ее резервах сдвиг обычно незначительный и кратковременный. Мощность регуляторных механизмов, однако, небеспредельна. Недостаточные компенсаторные возможности системы осморегуляции приводят к проявлению нарушений осмотического баланса. У раненых и больных, находящихся в критическом состоянии, могут наблюдаться оба сдвига осмоляльности: гипоосмоляльный, когда имеется избыток воды по отношению к осмотически активным веществам, и гиперосмоляльный, когда возрастает концентрация осмотически активных веществ во внеклеточной жидкости. Гипоосмоляльные состояния (осмоляльность ниже 275 мосмоль/кг Н20) обусловлены в основном гипонатриемией, абсолютной или относительной. Они возникают при превалировании потери солей над потерей воды или при избыточной водной нагрузке. При этом осмоляльность плазмы снижается параллельно концентрации натрия (в ммоль/л), и поэтому отношение между ними не изменяется (в норме это отношение колеблется от 0, 43 до 0, 50). Гиперосмоляльные расстройства (осмоляльность превышает 300 мосмоль/кг Н20) могут возникать прежде всего в результате преимущественной потери воды. При этом осмоляльность плазмы повышается параллельно концентрации натрия. Отношение же натрия к осмоляльности сохраняется на прежнем уровне, что имеет большое диагностическое значение. Сдвиг в осмотическом равновесии в сторону гиперосмии может быть обусловлен и накоплением эндогенных осмотически активных веществ вследствие гипергликемии, нарушения перфузии тканей и метаболизма, распада тканей (травматический и геморрагический шок, инфаркт миокарда, тяжелая гипоксия, гепаторенальный синдром и пр.), а также введения их извне (переливание растворов осмодиуретиков, концентрированной глюкозы, аминокислот и т.п.). В таких случаях нарастание осмоляльности перестает соответствовать уровню натрия, отношение между ними уменьшается и может приближаться к 0, 4. Растворы, применяемые в практике анестезиологии и реаниматологии, как правило изо- или гиперосмоляльны (табл. 3.13). Это обстоятельство обязательно необходимо учитывать при коррекции нарушений осмотического равновесия. Следует также правильно выбирать скорость их введения, поскольку от этого зависит выраженность возникающего осмотического градиента. Чем медленнее переливается гиперосмоляльный раствор, тем меньшую осмотическую нагрузку испытывают капиллярная стенка и клеточная мембрана. Чем быстрее производится его инфузия, тем больше сдвиг в осмотическом равновесии. Таблица 3.13. Осмоляльность некоторых инфузионных и трансфузионных сред (мосмоль/кг Н20)
Известно, что отчетливая дегидратация мозга наблюдается при подъеме осмоляльности плазмы крови выше нормы на 45 мосмоль/кг воды, а опытные невропатологи обнаруживают те или иные неврологические расстройства при повышении осмотической концентрации в интерстициальной жидкости свыше 300 мосмоль/кг Н2О. Увеличение осмоляльности крови до 350 мосмоль/кг Н2О и выше обычно сопровождается развитием гиперосмоляльной комы. Естественно, что переливание на таком фоне растворов с высокой осмотической активностью может привести к неблагоприятным последствиям.
|