Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Трансформация энергии в растительной клетке






В настоящее время процесс «запасания солнечного света» растениями описан в деталях на атомно-молекулярном уровне. В нем участвуют десятки видов молекул, расположенных в строгом порядке и четко выполняющих свои функции с точностью до мельчайших долей секунды. Наиболее важными составными частями фотосинтетического аппарата являются:

· Светособирающая антенна.

· Фотохимический реакционный центр.

· Цепь транспорта электронов.

Механизм сопряжения электронного транспорта с трансмембранным переносом протонов и синтезом АТФ.

Фотосинтез (изображение: www.sciam.ru)

У системы первичных процессов фотосинтеза есть одно важное свойство, которое позволило проникнуть в ее тайны чрезвычайно глубоко и с высокой точностью. Система «включается» светом, а это значит, что ее можно тестировать как радиотехническое устройство с помощью коротких импульсов света (например, лазерных вспышек). Кроме того, эффективно используются современные спектральные методы: дифференциальная и импульсная спектрофотометрия в полосах поглощения отдельных молекул – участников первичных реакций; флуорометрия; методы электронного парамагнитного и ядерного магнитного резонанса. Принципиально важным оказалось изучение препаратов фотосинтетических мембран при низких температурах, а также использование методов математического моделирования и компьютерной имитации.

Удивительно интересные выводы были сделаны биофизиками при анализе механизмов транспорта электрона, которые обеспечивают его эффективный и направленный перенос в макромолекулярных комплексах реакционного центра. Исследование кинетики первичных процессов фотосинтеза при низких температурах (-196оС) показало, что перемещение электрона при температуре жидкого азота происходит со скоростями, в общем близкими к тем, что наблюдаются при комнатной температуре. В основе данного процесса лежит квантово-механическое явление — так называемый туннельный эффект.

Для переноса электрона в фотосинтетической цепи характерно еще одно принципиальное свойство. Как только электрон «добирается» до молекулы акцептора, он утрачивает часть энергии, и обратное движение на этом участке становится невозможным. Потеря электронной энергии происходит в колебаниях легких атомных групп белка-акцептора. Характерное время колебаний составляет несколько пикосекунд. Смещения расстояний, которые при этом происходят у колеблющихся ядер, незначительны – меньше 0, 01 Å. Если в ходе таких опытов заменить в белке водород на дейтерий, то, поскольку он обладает большей массой, колебания замедляются, соответственно скорость переноса электрона падает и может быть зарегистрирована экспериментально.

Начиная с последних десятилетий XX в. все большую роль в развитии представлений о структурных изменениях фотосинтетического аппарата играет математическая биофизика – быстро развивающаяся область на стыке прикладной математики, физики, экспериментальной и теоретической биологии. Накопление знаний о структуре, строении и деталях организации фотосинтетического аппарата вместе с ростом возможностей вычислительной техники делают математическое моделирование первичных процессов фотосинтеза все более действенным инструментом, с помощью которого данные спектральных измерений переводятся на язык кинетических параметров и далее, с помощью компьютерной визуализации, на язык структурных изменений фотосинтетического аппарата.З.Г. Фетисова — сотрудник Института имени А.Н. Белозерского в МГУ им. М.В. Ломоносова — исследовала с помощью математического моделирования процесс миграции энергии электронного возбуждения в модельных фотосинтетических единицах и сопоставила теоретические выводы с данными прямых биофизических измерений свойств природных антенн. В результате ею был теоретически предсказан, а затем экспериментально выявлен ключевой принцип оптимизации функционирования светособирающих структур: олигомеризация пигментов светособирающей антенны. Возможно, это один из самых ранних примеров способности живых структур к кооперативному решению задач жизнеобеспечения.

Преобразование энергии в животной клетке

Неспособные к фотосинтезу клетки (например, человека) получают энергию из пищи, которой служит или биомасса растений, созданная в результате фотосинтеза, или биомасса других живых существ, питающихся растениями, или останки любых живых организмов.

Питательные вещества (белки, жиры и углеводы) преобразуются животной клеткой в ограниченный набор низкомолекулярных соединений – органических кислот, построенных из атомов углерода, которые с помощью специальных молекулярных механизмов окисляются до углекислоты и воды. При этом освобождается энергия, она аккумулируется в форме электрохимической разности потенциалов на мембранах и используется для синтеза АТФ или напрямую для совершения определенных видов работы.

История изучения проблем преобразования энергии в животной клетке, как и история фотосинтеза, насчитывает более двух веков.

У аэробных организмов окисление углеродных атомов органических кислот до углекислого газа и воды протекает с помощью кислорода и называется внутриклеточным дыханием, которое происходит в специализированных частицах – митохондриях. Трансформация энергии окисления осуществляется ферментами, расположенными в строгом порядке во внутренних мембранах митохондрий. Эти ферменты составляют так называемую дыхательную цепь и работают как генераторы, создавая разность электрохимических потенциалов на мембране, за счет которой синтезируется АТФ, подобно тому, как это происходит при фотосинтезе.

Перенос электронов в цепях митохондрий. Большинство ē, отнятых от субстратов дыхания, переносится через никотинамиддинуклеотид (NAD), коэнзим Q (КоQ) и цитохром c на кислород с образованием воды. Образование протонного потенциала в митохондрияx животных: а) AH2 – субстрат дыхания; б) A – продукт (изображение: www.sciam.ru)

Основная задача и дыхания и фотосинтеза — поддерживать соотношение АТФ/АДФ на определенном уровне, далеком от термодинамического равновесия, что и позволяет АТФ служить донором энергии, смещая равновесие тех реакций, в которых он участвует.

Основными энергетическими станциями живых клеток служат митохондрии — внутриклеточные частицы размером 0, 1–10μ, покрытые двумя мембранами. В митохондриях свободная энергия окисления продуктов питания превращается в свободную энергию АТФ. Когда АТФ соединяется с водой, при нормальных концентрациях реагирующих веществ, выделяется свободная энергия порядка 10 ккал/моль.

В неорганической природе смесь водорода и кислорода носит название «гремучей»: достаточно небольшой искры, чтобы произошел взрыв – мгновенное образование воды с огромным выделением энергии в виде тепла. Задача, которую выполняют ферменты дыхательной цепи: произвести «взрыв» так, чтобы освобождающаяся энергия была запасена в форме, пригодной для синтеза АТФ. Что они и делают: упорядоченно переносят электроны от одного компонента к другому (в конечном счете, на кислород), постепенно понижая потенциал водорода и запасая энергию.

О масштабах этой работы говорят следующие цифры. Митохондрии взрослого человека среднего роста и веса перекачивают через свои мембраны около 500 г ионов водорода в день, образуя мембранный потенциал. За это же время Н+-АТФ-синтаза производит около 40 кг АТФ из АДФ и фосфата, а использующие АТФ процессы гидролизуют всю массу АТФ назад в АДФ и фосфат.

 

Организация дыхательной цепи. I – NADH-дегидрогеназа (убихинон); II – сукцинатдегидрогеназа; III – убихинол-цитохром c-редуктаза; IV — цитохром c-оксидаза; V – H -транспортирующая АТФ-синтаза (изображение: www.sciam.ru)

Исследования показали, что митохондриальная мембрана действует как трансформатор напряжения. Если передавать электроны субстрата от НАДН прямо к кислороду сквозь мембрану, возникнет разность потенциалов около 1 В. Но биологические мембраны – двухслойные фосфолипидные пленки не выдерживают такую разность – возникает пробой. Кроме того, для производства АТФ из АДФ, фосфата и воды требуется всего 0, 25 В, значит, нужен трансформатор напряжения. И задолго до появления человека клетки «изобрели» такой молекулярный прибор. Он позволяет в четыре раза увеличить ток и за счет энергии каждого передаваемого от субстрата к кислороду электрона перенести через мембрану четыре протона благодаря строго согласованной последовательности химических реакций между молекулярными компонентами дыхательной цепи.

Итак, два главных пути генерации и регенерации АТФ в живых клетках: окислительное фосфорилирование (дыхание) и фотофосфорилирование (поглощение света), — хотя и поддерживаются разными внешними источниками энергии, но оба зависят от работы цепочек каталитических ферментов, погруженных в мембраны: внутренние мембраны митохондрий, тилакоидные мембраны хлоропластов или плазматические мембраны некоторых бактерий.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал