Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Информация, данные, знания. Способы хранения и представления данных и знаний. Продукционная, сетевая и фреймовая модель знаний.Стр 1 из 11Следующая ⇒
Лекция № 1 Проблема искусственного интеллекта (ИИ). Основные понятия и задачи ИИ. С " ИИ" сложилась ситуация, которая роднит его с коммунизмом — изучается то, чего еще нет. И если этого не будет в течение ближайших 100 лет, то очень может быть, что эпоха ИИ на этом окончится. Исходя из сказанного выше, вытекает основная философская проблема в области ИИ — возможность или не возможность моделирования мышления человека. В случае если когда-либо будет получен отрицательный ответ на этот вопрос, то все остальные вопросы курса не будут иметь не малейшего смысла. Следовательно, начиная исследование ИИ, мы заранее предполагаем положительный ответ. Попробуем привести несколько соображений, которые подводят нас к данному ответу. - Создание нового разума биологическим путем для человека дело вполне привычное. Наблюдая за детьми, мы видим, что большую часть знаний они приобретают путем обучения, а не как заложенную в них заранее. Данное утверждение на современном уровне не доказано, но по внешним признакам все выглядит именно так. - С проблемой воспроизведения своего мышления тесно смыкается проблема возможности самовоспроизведения. Способность к самовоспроизведению долгое время считалась прерогативой живых организмов. Однако некоторые явления, происходящие в неживой природе (например, рост кристаллов, синтез сложных молекул копированием), очень похожи на самовоспроизведение. В начале 50-х годов Дж. фон Нейман занялся основательным изучением самовоспроизведения и заложил основы математической теории " самовоспроизводящихся автоматов". Так же он доказал теоретически возможность их создания. Существуют также различные неформальные доказательства возможности самовоспроизведения, но для программистов самым ярким доказательством, пожалуй, будет существование компьютерных вирусов. - Принципиальная возможность автоматизации решения интеллектуальных задач с помощью ЭВМ обеспечивается свойством алгоритмической универсальности. Что же это за свойство? Алгоритмическая универсальность ЭВМ означает, что на них можно программно реализовывать (т. е. представить в виде машинной программы) любые алгоритмы преобразования информации, — будь то вычислительные алгоритмы, алгоритмы управления, поиска доказательства теорем или композиции мелодий. Так, в связи с появлением быстродействующих ЭВМ стали практически осуществимыми и такие алгоритмы, которые ранее были только потенциально осуществимыми. Однако не следует думать, что вычислительные машины и роботы могут в принципе решать любые задачи. Анализ разнообразных задач привел математиков к замечательному открытию. Было строго доказано существование таких типов задач, для которых невозможен единый эффективный алгоритм, решающий все задачи данного типа; в этом смысле невозможно решение задач такого типа и с помощью вычислительных машин. Этот факт способствует лучшему пониманию того, что могут делать машины и чего они не могут сделать. В самом деле, утверждение об алгоритмической неразрешимости некоторого класса задач является не просто признанием того, что такой алгоритм нам не известен и никем еще не найден. Такое утверждение представляет собой одновременно и прогноз на все будущие времена о том, что подобного рода алгоритм нам не известен и никем не будет указан или, и иными словами, что он не существует. Как же действует человек при решении таких задач? Похоже, что он просто-напросто игнорирует их, что, однако не мешает ему жить дальше. Другим путем является сужение условий универсальности задачи, когда она решается только для определенного подмножества начальных условий. И еще один путь заключается в том, что человек методом " научного тыка" расширяет множество доступных для себя элементарных операций (например, создает новые материалы, открывает новые месторождения или типы ядерных реакций). Зачем создавать, человек готов сделать все что угодно только ради того что бы потом ни чего не делать. Т.е. машина копают строят готовят, потом еще и думают. Что делать? Самым приемлемым ответом на эти вопросы является концепция " усилителя интеллекта" (УИ). В данном примере президент использует биологический УИ — группу специалистов с их белковыми мозгами. Но уже сейчас используются и неживые УИ — например мы не могли бы предсказать погоду без компьютеров, при полетах космических кораблей с самого начала использовались бортовые счетно-решающие устройства. Кроме того, человек уже давно использует усилители силы (УС) — понятие, во многом аналогичное УИ. В качестве усилителей силы ему служат автомобили, краны, электродвигатели, прессы, пушки, самолеты и многое-многое другое. Проблема безопасности. Данная проблема будоражит умы человечества еще со времен Карела Чапека, впервые употребившего термин " робот". Большую лепту в обсуждение данной проблемы внесли и другие писатели-фантасты. Как самые известные мы можем упомянуть серии рассказов писателя-фантаста и ученого Айзека Азимова, а так же довольно свежее произведение — " Терминатор". Кстати именно у Айзека Азимова мы можем найти самое проработанное, и принятое большинством людей решение проблемы безопасности. Речь идет о так называемых трех законах роботехники. - Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред. - Робот должен повиноваться командам, которые ему дает человек, кроме тех случаев, когда эти команды противоречат первому закону. - Робот должен заботиться о своей безопасности, насколько это не противоречит первому и второму закону. Однако, несмотря на перечисленные проблемы, данные законы являются довольно неплохим неформальным базисом проверки надежности системы безопасности для систем ИИ. Но это перевести на машинный язык не возможно! Информация, данные, знания. Способы хранения и представления данных и знаний. Продукционная, сетевая и фреймовая модель знаний. - Информация, данные, знания. Как же следует понимать эти категории? Начнем с попытки дать определения терминам " знание", " информация", " данные". · Данные - сведения, представленные в определенной знаковой системе и на определенном носителе для обеспечения возможностей хранения, передачи, приема и обработки этих сведений. Уходя от способов представления, хранения и передачи, данные можно рассматривать как абстрактную субстанцию, несущую некоторую информацию. Данные безотносительны к содержанию информации. · Знание - проверенные общественной практикой полезные сведения, которые могут многократно использоваться людьми для решения тех или иных задач. Обратите внимание на " рыхлость" этого традиционного определения в сравнении с нижеследующим. · Знание как объект коммерции и автоматизации - логически полный ограниченный набор сведений для непосредственного решения требуемой задачи (ряда задач) подготовленными специалистами. Такие сведения выражаются в системе понятий, принятой в рамках некоторой науки или производственной деятельности, и имеют стандартное представление. Ограниченный набор позволяет задать уровень подготовки специалистов (обладание требуемым уровнем понимания). · Полезная информация — набор сведений (разъяснений, сигналов), уменьшающих степень неопределенности у их получателя. В отличие от знаний этот набор может быть логически неполным. · Релевантная информация (недостающие знания). Полезная информация, полностью устраняющая степень неопределенности у ее получателя. · Информационный мусор — данные, не несущие полезной информации и многократно увеличивающие временные и прочие издержки пользователя на извлечение и обработку полезной информации. · Информация (в общем случае) — совокупность знаний с информационным мусором. Я же считаю, что " данные" - это такое же первоначальное понятие, как, скажем, в математике " точка": попытка дать определение начальным понятиям приводит к необходимости дополнительно определять использованные термины. Итак, будем считать, что данные - это те или иные сведения (необязательно несущие смысловую нагрузку). Пример данных: 812, 930, 944.Информация - это данные, сопровождающиеся смысловой нагрузкой. При этом, очевидно, то, что для одних является данными для других вполне может быть информацией. Но всегда можно точно сказать что нужно предпринять для того, чтобы те или иные данные стали информативными для наибольшей аудитории: их нужно снабдить смысловым содержанием. Чем более полным будет это содержание, тем более информативной будет соответствующее сообщение. Пример информации: 812 рублей, 930 рублей, 944 рубля. Более информативное сообщение: 812 рублей, 930 рублей, 944 рубля -цены на бальзам после бритья. Ещё более информативное: 812 рублей, 930 рублей, 944 рубля -цены на бальзам после бритья " Dune", 100 мл. в Москве.Знание - есть переживание, сравнённое с другими переживаниями (Лосский Н.О., Избранное. М.: " Правда", 1991., стр. 76.). Я считаю, что это определение, которое дал Лосский в своей работе " Обоснование интуитивизма", является наиболее точным. Пример знания: Цены на бальзам после бритья " Dune", 100 мл. 8 апреля 2000 г. (по Москве)-------------------------------------------------------------------------В салоне Christian Dior (Тверская ул.): 812 рублей; В салоне Rivoli (Торговый комплекс на Манежной площади): 930 рублей; В салоне Л'Этуаль (Рамстор на Молодёжной): 944 рубля.В итоге мы имеем следующие простые формулы: информация = данные + смысл; знание = информация + сравнение.Способы хранения и представления данных и знаний Особенности знаний: 1. Внутренняя интерпретируемость. Каждая информационная единица должна иметь уникальное имя, по которому ИС находит ее, а также отвечает на запросы, в которых это имя упомянуто. Когда данные, хранящиеся в памяти, были лишены имен, то отсутствовала возможность их идентификации системой. Данные могла идентифицировать лишь программа, извлекающая их из памяти по указанию программиста, написавшего программу. Что скрывается за тем или иным двоичным кодом машинного слова, системе было неизвестно.
При переходе к знаниям в память ЭВМ вводится информация о некоторой протоструктуре информационных единиц. В рассматриваемом примере она представляет собой специальное машинное слово, в котором указано, в каких разрядах хранятся сведения о фамилиях, годах рождения, специальностях и стажах. При этом должны быть заданы специальные словари, в которых перечислены имеющиеся в памяти системы фамилии, года рождения, специальности и продолжительности стажа. Все эти атрибуты могут играть роль имен для тех машинных слов, которые соответствуют строкам таблицы. По ним можно осуществлять поиск нужной информации. Каждая строка таблицы будет экземпляром протоструктуры. В настоящее время СУБД обеспечивают реализацию внутренней интерпретируемости всех информационных единиц, хранящихся в базе данных. 2. Структурированность. Информационные единицы должны обладать гибкой структурой. Для них должен выполняться " принцип матрешки", т.е. рекурсивная вложимость одних информационных единиц в другие. Каждая информационная единица может быть включена в состав любой другой, и из каждой информационной единицы можно выделить некоторые составляющие ее информационные единицы. 3. Связность. В информационной базе между информационными единицами должна быть предусмотрена возможность установления связей различного типа. Прежде всего, эти связи могут характеризовать отношения между информационными единицами. Семантика отношений может носить декларативный или процедурный характер. 4. Между информационными единицами могут устанавливаться и иные связи, например, определяющие порядок выбора информационных единиц из памяти или указывающие на то, что две информационные единицы несовместимы друг с другом в одном описании. Перечисленные три особенности знаний позволяют ввести общую модель представления знаний, которую можно назвать семантической сетью, представляющей собой иерархическую сеть, в вершинах которой находятся информационные единицы. Эти единицы снабжены индивидуальными именами. Дуги семантической сети соответствуют различным связям между информационными единицами. При этом иерархические связи определяются отношениями структуризации, а неиерархические связи - отношениями иных типов. 5. Семантическая метрика. На множестве информационных единиц в некоторых случаях полезно задавать отношение, характеризующее ситуационную близость информационных единиц, т.е. силу ассоциативной связи между информационными единицами. Его можно было бы назвать отношением релевантности для информационных единиц. 6. Активность. С момента появления ЭВМ и разделения используемых в ней информационных единиц на данные и команды создалась ситуация, при которой данные пассивны, а команды активны. Все процессы, протекающие в ЭВМ, инициируются командами, а данные используются этими командами лишь в случае необходимости. Перечисленные пять особенностей информационных единиц определяют ту грань, за которой данные превращаются в знания, а базы данных перерастают в базы знаний (БЗ). Совокупность средств, обеспечивающих работу с знаниями, образует систему управления базой знаний (СУБЗ). Модели представления знаний. Неформальные (семантические) модели. Существуют два типа методов представления знаний (ПЗ): 1. Формальные модели ПЗ; 2. Неформальные (семантические, реляционные) модели ПЗ. Каждому из методов ПЗ соответствует свой способ описания знаний. 1. Логические модели. В основе моделей такого типа лежит формальная система, задаваемая четверкой вида: M = < T, P, A, B>. Множество T есть множество базовых элементов различной природы, например слов из некоторого ограниченного словаря, деталей детского конструктора, входящих в состав некоторого набора и т.п. Важно, что для множества T существует некоторый способ определения принадлежности или непринадлежности произвольного элемента к этому множеству. Процедура такой проверки может быть любой, но за конечное число шагов она должна давать положительный или отрицательный ответ на вопрос, является ли x элементом множества T. Обозначим эту процедуру П(T). Множество P есть множество синтаксических правил. С их помощью из элементов T образуют синтаксически правильные совокупности. Например, из слов ограниченного словаря строятся синтаксически правильные фразы, из деталей детского конструктора с помощью гаек и болтов собираются новые конструкции. Декларируется существование процедуры П(P), с помощью которой за конечное число шагов можно получить ответ на вопрос, является ли совокупность X синтаксически правильной. Во множестве синтаксически правильных совокупностей выделяется некоторое подмножество A. Элементы A называются аксиомами. Как и для других составляющих формальной системы, должна существовать процедура П(A), с помощью которой для любой синтаксически правильной совокупности можно получить ответ на вопрос о принадлежности ее к множеству A. Множество B есть множество правил вывода. Применяя их к элементам A, можно получать новые синтаксически правильные совокупности, к которым снова можно применять правила из B. Так формируется множество выводимых в данной формальной системе совокупностей. Если имеется процедура П(B), с помощью которой можно определить для любой синтаксически правильной совокупности, является ли она выводимой, то соответствующая формальная система называется разрешимой. Это показывает, что именно правило вывода является наиболее сложной составляющей формальной системы. 2. Сетевые модели. В основе моделей этого типа лежит конструкция, названная ранее семантической сетью. Сетевые модели формально можно задать в виде H = < I, C1, C2,..., Cn, Г >. Здесь I есть множество информационных единиц; C1, C2,..., Cn - множество типов связей между информационными единицами. Отображение Г задает между информационными единицами, входящими в I, связи из заданного набора типов связей. В зависимости от типов связей, используемых в модели, различают классифицирующие сети, функциональные сети и сценарии. В классифицирующих сетях используются отношения структуризации. Такие сети позволяют в базах знаний вводить разные иерархические отношения между информационными единицами. Функциональные сети характеризуются наличием функциональных отношений. Их часто называют вычислительными моделями, т.к. они позволяют описывать процедуры " вычислений" одних информационных единиц через другие. В сценариях используются каузальные отношения, а также отношения типов " средство - результат", " орудие - действие" и т.п. Если в сетевой модели допускаются связи различного типа, то ее обычно называют семантической сетью. 3. Продукционные модели. В моделях этого типа используются некоторые элементы логических и сетевых моделей. Из логических моделей заимствована идея правил вывода, которые здесь называются продукциями, а из сетевых моделей - описание знаний в виде семантической сети. В результате применения правил вывода к фрагментам сетевого описания происходит трансформация семантической сети за счет смены ее фрагментов, наращивания сети и исключения из нее ненужных фрагментов. Таким образом, в продукционных моделях процедурная информация явно выделена и описывается иными средствами, чем декларативная информация. Вместо логического вывода, характерного для логических моделей, в продукционных моделях появляется вывод на знаниях. 4. Фреймовые модели. В отличие от моделей других типов во фреймовых моделях фиксируется жесткая структура информационных единиц, которая называется протофреймом. В общем виде она выглядит следующим образом: (Имя фрейма: Имя слота 1(значение слота 1) Имя слота 2(значение слота 2) ...................... Имя слота К (значение слота К)). Значением слота может быть практически что угодно (числа или математические соотношения, тексты на естественном языке или программы, правила вывода или ссылки на другие слоты данного фрейма или других фреймов). В качестве значения слота может выступать набор слотов более низкого уровня, что позволяет во фреймовых представлениях реализовать " принцип матрешки". Формальные модели представления знаний. Система ИИ в определенном смысле моделирует интеллектуальную деятельность человека и, в частности, - логику его рассуждений. В грубо упрощенной форме наши логические построения при этом сводятся к следующей схеме: из одной или нескольких посылок (которые считаются истинными) следует сделать " логически верное" заключение (вывод, следствие). Очевидно, для этого необходимо, чтобы и посылки, и заключение были представлены на понятном языке, адекватно отражающем предметную область, в которой проводится вывод. В обычной жизни это наш естественный язык общения, в математике, например, это язык определенных формул и т.п. Наличие же языка предполагает, во - первых, наличие алфавита (словаря), отображающего в символьной форме весь набор базовых понятий (элементов), с которыми придется иметь дело и, во - вторых, набор синтаксических правил, на основе которых, пользуясь алфавитом, можно построить определенные выражения.
|