Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Суперпозиция (наложение) волн
Существует универсальный закон, который играет решающую роль в исследовании волновых процессов. Роль этого закона сопоставима со значением законов Ньютона в механике. Этот закон обычно называют: принцип суперпозиции. Само название напоминает уже рассмотренный ранее (Глава 3) принцип суперпозициив механике, однако, если в механике этот принцип является лишь средством для рассмотрения сложных движений, то в теории волн этот принцип имеет основополагающее значение. В волновой теории принцип суперпозиции отражает тот факт, что присутствие одной волны не изменяет способность среды нести другую волну. Таким образом, две волны, распространяющиеся в одной и той же среде, могут пройти сквозь друг друга, не изменив своей формы. Простой пример для случая двух волн, бегущих по струне навстречу друг другу показан на рис. 7-3. В момент встречи волн маленькая волна проявляет себя просто как небольшой провал на большой волне. Если использовать не качественные(“маленькая волна”, “небольшой провал”), а количественные характеристики, то волновой принцип суперпозиции позволяет утверждать, что смещение, произведенное несколькими волнами воднойи той же точке, является суммой смещений, производимых каждой из волн. Наиболее интересно применение этого принципа к волнам одинакового размера (одинаковой амплитуды [42], а,). Рис. 7-4 иллюстрирует проявление принципа суперпозиции для двух одинаковых волн, распространяющихся навстречу друг другу. Одновременное присутствие двух[43] волн в одном месте называют интерференцией [44]. Если обе волны стремятся сместить точки среды в одном направлении (как на рис.7-4 a), то интерференцию называют конструктивной. Процессы, показанные на рис. 7-4b) соответствуют случаю деструктивной (разрушительной) интерференции. Единственная связь между механическим и волновым принципамисуперпозициизаключается в том, что для механических волн (таких, как волны в струне, волны на поверхности воды и т.п.) волновой принцип суперпозиции может быть получен, как следствие механического. Но многие волны являются сугубо не механическими, так что лучше рассматривать принцип суперпозиции как особый волновой закон. Наиболее интересные результаты дает " обратное" применение принципа суперпозиции. Это те ситуации, в которых мы анализируем волну и пытаемся предсказать её будущее развитие, представив ее в виде суммы нескольких других волн. Такой подход напоминает действия Галилея в ситуации, где он, анализируя движение снаряда, разложил сложное движение на два более простых (см. Гл. 3). Вернемся к примеру, где волна создается резким ударом по середине натянутой струны. Сформированный ударом волновой импульс одинаково свободно перемещается в обоих направлениях. Создать на струне волну, движущуюся только вправо или только влево невозможно! Как это объяснить? Нетрудно ответить на этот вопрос, если принять во внимание, что в момент резкого удара на струне реализуется точно такая же ситуация, как и в момент полного наложения двух одинаковых импульсов, бегущих навстречу друг другу (см рис. 7-4 (a)). В этих двух ситуациях нет никаких отличий ни в форме струны, ни в характере движения отдельных её элементов. Да, в одном случае “всплеск“ формируется в результате наложения двух бегущих волн, а в другом создается внешним воздействием, но не может быть никаких различий в последующем поведении волны. На основании этого мы можем предсказать, что “всплеск“ на струне, вызванный ударом по ней, неизбежно “расколется” на две волны, распространяющиеся по струне в противоположных направлениях. Очередное мыслительное усилие покажет, что амплитуда (“высота”) каждой из этих волн должна быть равна половине высоты начального “всплеска“. Наблюдения подтверждают, что дело обстоит именно так.
|