Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Случайные величины. Мы уже видели, что для многих экспериментов нет никаких различий в подсчёте вероятностей событий, тогда как элементарные исходы в этих экспериментах оченьСтр 1 из 8Следующая ⇒
Мы уже видели, что для многих экспериментов нет никаких различий в подсчёте вероятностей событий, тогда как элементарные исходы в этих экспериментах очень различаются. Но нас и должны интересовать именно вероятности событий, а не структура пространства элементарных исходов. Поэтому пора во всех таких «похожих» экспериментах вместо самых разных элементарных исходов использовать, например, числа. Иначе говоря, каждому элементарному исходу поставить в соответствие некоторое вещественное число, и работать только с числами. Пусть задано вероятностное пространство . Определение 26. Функция называется случайной величиной, если для любого борелевского множества множество является событием, т.е. принадлежит -алгебре . Множество , состоящее из тех элементарных исходов , для которых принадлежит , называется полным прообразом множества . Замечание 9. Вообще, пусть функция действует из множества в множество , и заданы -алгебры и подмножеств и соответственно. Функция называется измеримой, если для любого множества его полный прообраз принадлежит . Замечание 10. Читатель, не желающий забивать себе голову абстракциями, связанными с -алгебрами событий и с измеримостью, может смело считать, что любое множество элементарных исходов есть событие, и, следовательно, случайная величина есть произвольная функция из в . Неприятностей на практике это не влечёт, так что всё дальнейшее в этом параграфе можно пропустить. Теперь, избавившись от нелюбопытных читателей, попробуем понять, зачем случайной величине нужна измеримость. Если задана случайная величина , нам может потребоваться вычислить вероятности вида , , , (и вообще самые разные вероятности попадания в борелевские множества на прямой). Это возможно лишь если множества, стоящие под знаком вероятности, являются событиями — ведь вероятность есть функция, определённая только на -алгебре событий. Требование измеримости равносильно тому, что для любого борелевского множества определена вероятность . Можно потребовать в определении 26 чего-нибудь другого. Например, чтобы событием было попадание в любой интервал: , или в любой полуинтервал: . Убедимся, например, что эквивалентны определения 26 и 27: Определение 27. Функция называется случайной величиной, если для любых вещественных множество принадлежит -алгебре . Доказательство эквивалентности определений 26, 27. Если — случайная величина в смысле определения 26, то она будет случайной величиной и в смысле определения 27, поскольку любой интервал является борелевским множеством. Докажем, что верно и обратное. Пусть для любого интервала выполнено . Мы должны доказать, что то же самое верно и для любых борелевских множеств. Соберём в множестве все подмножества вещественной прямой, прообразы которых являются событиями. Множество уже содержит все интервалы . Покажем теперь, что множество является -алгеброй. По определению, тогда и только тогда, когда множество принадлежит . 1. Убедимся, что . Но и, следовательно, . 2. Убедимся, что для любого . Пусть . Тогда , так как — -алгебра. 3. Убедимся, что для любых . Пусть для всех . Но — -алгебра, поэтому Мы доказали, что — -алгебра и содержит все интервалы на прямой. Но — наименьшая из -алгебр, содержащих все интервалы на прямой. Следовательно, содержит : . QED Приведём примеры измеримых и неизмеримых функций. Пример 25. Подбрасываем кубик. Пусть , и две функции из в заданы так: , . Пока не задана -алгебра , нельзя говорить об измеримости. Функция, измеримая относительно какой-то -алгебры , может не быть таковой для другой . 1. Если есть множество всех подмножеств , то и являются случайными величинами, поскольку любое множество элементарных исходов принадлежит , в том числе и или . Можно записать соответствие между значениями случайных величин и и вероятностями принимать эти значения в виде «таблицы распределения вероятностей» или, коротко, «таблицы распределения»: Здесь . 2. Пусть -алгебра событий состоит из четырёх множеств: , т.е. событием является, кроме достоверного и невозможного событий, выпадение чётного или нечётного числа очков. Убедимся, что при такой сравнительно бедной -алгебре ни , ни не являются случайными величинами, поскольку они неизмеримы. Возьмём, скажем, . Видим, что и .
|