![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Методы укрупнения и сглаживания динамических рядов
Укрупнение и сглаживание – это математические операции над данными динамического ряда, которые позволяют выявлять тенденции, т.е. наиболее медленные составляющие изучаемого процесса, которые наблюдаются на фоне быстрых случайных всплесков и колебаний. Такой подход к динамическому ряду, описывающему социальное явление, означает, что явление рассматривается как арифметическая сумма быстро и медленно меняющихся процессов.
РЯД(t) = МЕДЛ(t) + БЫСТР(t)
Целью обработки динамического ряда является разделение этих слагаемых. Во многих случаях такая модель социальных явлений правомерна.
Укрупнение динамического ряда - разбиение исходного ряда на неперекрывающиеся группы соседних данных (пары, тройки, и.т.д.), а затем вычисление суммы внутри каждой группы. Получается новый ряд, число значений в котором будет меньше исходного в два, три или более раз, соответственно. Рассмотрим пример статистики женщин, совершивших преступления в период 2008 – 2010 годов по полугодиям.
Наблюдаются сезонные колебания данных, для выявления тенденции применим укрупнение: сгруппируем данные по 2 и сложим в каждой группе. Исходный ряд: x1 = 110 210, x2 = 90 624, …, x6 = 77 916. Укрупнение по 2: y1 = 110 210 + 90 624 = 200 834, y2 = 105 796 + 66 406 = 194 202, y3 = 94 459 + 77 916 = 172 375.
Получим данные по годам, а не по полугодиям: вместо 6 чисел - 3, но стала явно видна тенденция к снижению показателя. Аналогичным образом можно проводить укрупнение по 3, 4 и более периодов в одной группе. Сглаживание динамического ряда - разбиение исходного ряда на перекрывающиеся группы данных по два, три или более смежных значений, (сдвиг по исходному ряду на одно значение), а затем вычисление среднего арифметического в каждой группе (скользящее среднее). После обработки остается на 1, 2 и т.д. значения меньше в зависимости от величины групп (2, 3, …). Рассмотрим метод сглаживания на том же примере статистики женщин-преступниц, применим сглаживание по 3 (среднее арифметическое первых трех элементов, затем 2, 3 и 4 и т.д. – это пересекающиеся группы данных). Сглаживание по 3: y1 = (x1 +x2 +x3) / 3 = 102 210, y2 = (x2 +x3 +x4) / 3 = 87 609, y3 = (x3 +x4 +x5) / 3 = 88 887, y4 = (x4 +x5 +x6) / 3 = 79 594.
После сглаживания можно отметить следующее поведение процесса: снижение, стабильность, снова снижение показателя, однако, данных явно недостаточно, чтобы отфильтровать сезонные колебания. Укрупнение и сглаживание ведут к уменьшению случайных всплесков, особенно хорошо тенденции видны на графиках, построенных по укрупненным или сглаженным данным. Укрупнение применяют к интервальным динамическим рядам, а сглаживание - как к интервальным, так и к моментным рядам.
|