![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Социальные технологии предотвращения аварий и катастроф на техногенных объектах
В данной главе будут рассмотрены следующие основные вопросы. 1. Безопасность и устойчивость работы техногенных объектов. 2. Социальные технологии в атомной энергетике: актуальность разработки и применения. 3. Пути инновирования социальных систем в техногенном производстве.
1. В настоящее время безопасность и устойчивость работы техногенных объектов являются одной из базовых, стратегических проблем человечества на пути к устойчивому развитию. На земном шаре значительно возросло количество техногенных опасностей, угрожающих обществу, окружающей среде: химических, биотехнологических, атомных, оружейных, что существенно расширяет критическую зону для человека и природы. Чрезвычайные ситуации, катастрофы, аварии на гидротехнических, химических и военных производствах, газо- и нефтепроводах, АЭС становятся частым и обычным явлением. По данным ряда ученых, такие события, как стихийные бедствия, техногенные аварии, характеризуются ростом их числа на 57%, ростом ущерба — на 5, 1, ростом количества жертв — на 6, 1% ежегодно. Эта же тенденция будет сохраняться и усиливаться до 2030 г. (Проект Государственной стратегии устойчивого развития Российской Федерации). Нынешний этап развития цивилизации — это этап разрастающегося социально-экологического кризиса, преодоление которого требует пересмотра всех основных " истин" в экономической, социальной, демографической и экологической сферах на основе согласования их с законами биосферы и вытекающими из них ограничениями. Перед миром встает огромная проблема: научиться моделировать, прогнозировать техногенные катастрофы, исключить момент " привыкания" к их возникновению и создать масштабные управленческие системы, не только организационно-технически, но и морально-психологически готовые к упреждающим действиям. В отношении к этим объектам позиция " ликвидации последствий" во многом является неприемлемой, хотя и здесь должна быть полная готовность. Размеры разрушающих последствий могут быть настолько велики, что надолго способны парализовать все ресурсы общества и природы. Все это налагает на производство и эксплуатацию такого рода объектов со стороны общества, субъектов управления особую ответственность не только в виде существенных капиталовложений и соответствующей технической вооруженности, но и всесторонней готовности на долгосрочной основе осуществлять масштабные меры профилактики, прогнозирования. Речь также идет о создании средств и систем упреждающего реагирования, прежде всего научно-аналитических, информационных, способных предупреждать техногенные катастрофы. Назрела необходимость создания и надежного функционирования упреждающей системы управления техногенными объектами. Анализ показывает, что эти объекты во многом сегодня находятся в состоянии чрезвычайной ситуации, ряд из них не имеет надежной упреждающей защиты. Тактические средства быстрого реагирования на требования экстремальной ситуации, в том числе и информационно-аналитические, представляются далеко не оптимальными. Поэтому новое, насущное требование современной ситуации не только в России, но и в мире — это использование нетрадиционных, инновационных технологий. Безопасность — одна из первейших потребностей человека, общества, государства, человечества. Ее сущность заключается в способности отражать, предупреждать, устранять опасности, угрожающие существованию указанных выше субъектов, а также разрушающие их фундаментальные интересы, без удовлетворения которых немыслимы жизнь, благополучие, развитие и прогресс. Своевременно устранять опасность возможно в случае адекватных методов, направленных на борьбу с ней. Выработка таких методов немыслима без подробного и всеобъемлющего изучения причин, ее порождающих. Следовательно, говоря о безопасности, мы всегда подразумеваем существование целого ряда причин, ее обусловливающих в различных сферах жизни человеческого общества, а также, меры для их устранения. Важно заметить, что, рассматривая современное общество, многие ученые и специалисты различных областей знания отмечают, что его качественной особенностью, неотъемлемой чертой его внутренней жизни является систематическое взаимодействие с угрозами и разрушениями, порождаемыми перманентным процессом модернизации, ставшим характерной чертой современной цивилизации, и полагают, что " производство рисков" — социальный процесс. В развитом обществе социальное производство материальных ценностей систематически сопровождается " социальным производством риска". Иначе говоря, в определенном отношении это катастрофическое общество, которое требует смены социологической парадигмы. Одной из характерных черт новой парадигмы развития должно быть государственное прогнозирование и регулирование процесса модернизации, переход от неограниченного к ограниченному риску, когда приоритетом является сохранение, защита природы и человека, предотвращение опасности[40]. Опасность зарождается и проявляется на различных уровнях и в различных сферах — политической, экономической, экологической, технологической, социальной. Причем если опасность существует в одной из приведенных сфер, то факторы, ее порождающие, могут принадлежать к разным сферам, тесно взаимосвязанным друг с другом. Это прежде всего относится к области современных опасных производств и технологий, где ослабление технологического, информационного контроля со стороны общества, государства может привести к необратимым последствиям. Поэтому инновационные ресурсы, которыми являются социальные технологии, в первую очередь должны быть нацелены на усиление социально-технологического контроля со стороны органов государственного управления за состоянием современных техногенных производств. Ослабление внимания к этой области, недостаточность мер социотехнической профилактики могут обернуться такой бедой для человечества, когда все его усилия будут сконцентрированы только на устранении последствий возникшей аварии, взрыва, а все остальные функции государственного регулирования окажутся ненужными в силу разрушения главного субъекта управления — человека, прежде всего страдающего в процессе техногенных катастроф. Все это с очевидностью свидетельствует о том, что необходима инновационная государственная (федеральная и региональная) система предупреждения чрезвычайной ситуации техногенного взрыва. Ее разработка и осуществление начинаются (стратегия оперативного реагирования или ближнего действия) с применения программно-целевого метода управления в данной области. В основе этого подхода лежат следующие положения: • техногенное производство представляет собой сложную систему, состоящую из взаимосвязанных технических, экономических и социальных объектов; • эта система является организованной и имеет многоуровневую иерархическую структуру; • техногенное производство представляет собой часть системы хозяйства общества, состоит из огромного количества разнообразных объектов, число связей в них очень велико; • эта подсистема хозяйства и социальной жизни людей является управляемой; • управление в ней основано на использовании экономических, социальных, технических закономерностей в их неразрывном единстве; • подсистема обладает свойствами целенаправленности, иначе управление на всех уровнях неправильно; • подсистема представляет собой динамическую, быстро развивающуюся структуру, реализующую как долгосрочные стратегические цели, так и кратковременные, имеющие сравнительно частный характер. Программно-целевой метод управления повышает значимость выбора целей развития любой сложной системы, он предполагает согласование ряда комплексных программ и развития межотраслевых производственных комплексов, характеризуется целенаправленностью использования ресурсов, выделением их приоритетов. При этом должна быть соблюдена определенная технология, включающая следующие процедуры: • оценка проблемной ситуации, основные предпосылки ее программного решения; • главная цель программы, ее место в общей системе целей и задач общества и хозяйственного комплекса; • система целей и основных задач программы; • показатели, раскрывающие конечные результаты реализации программы; • пути достижения целей программы, система программных мероприятий, организационно-исполнительная структура; • данные о ресурсах, необходимых для выполнения программы, сроках ее осуществления; • оценка эффективности и последствий реализации программы. Программно-целевой метод в настоящее время широко используется в решении технических, социально-экономических и естественно-научных проблем во всем мире, начинает активно применяться субъектами управления и в России, но пока явно в недостаточной мере. Это относится к российской сфере социо-технического проектирования, где накопилось огромное количество острейших проблем, требующих решения, особенно в области техногенного производства. В сложившихся условиях оптимальным выходом из такой ситуации является внедрение программы " Социальные регуляторы предотвращения чрезвычайных происшествий на опасных производствах". Концепция, механизмы ее реализации разработаны учеными Академии социальных технологий, и отделения атомной энергетики Международной Академии информатизации. В рамках проекта осуществляется диагностика социотехни-ческой ситуации на ряде объектов атомной энергетики и спроектирован ряд пакетов социальных технологий, способных снять социотехническое напряжение. 2. Проектные разработки показали, что в современных условиях быстрых трансформаций, динамичных перемен, глобальных угроз и рисков в мировой практике управления все в большей мере утверждается инновационный метод освоения социотехнического пространства — его технологизация. Разработка и внедрение социальных технологий, обеспечивающих безопасность функционирования техногенных и опасных объектов, предполагают использование целого комплекса методов сбора и обработки информации: статистический анализ, контент-анализ документов и прессы, фрагменты " мозговой атаки" и деловой игры с активом управления, факторный анализ группы риска, анкетный и экспертный опросы, моделирование, прогнозирование. Основные направления исследования, связанные в первую очередь с практическими задачами, нацелены на разработку следующих социальных технологий: 1. Определение допустимых порогов рассогласованности системы. 2. Выявление приоритетных направлений развития системы на основе выявления " слабых звеньев" и " провалов". 3. Выявление уровня социальной и технической усталости среды (системы) и способов разрешения возникающих напряжений и конфликтов. 4. Определение вектора социальных интересов, согласование возникающих проблем на основе различных альтернатив. Одним из методов эмпирического замера границ, в которых система теряет свою устойчивость, качественную определенность (от простой разбалансированности до угрозы полной катастрофы), является условная модель допустимого рассогласования между " целями", " интересами" развития системы и их актуализации в конкретной социальной практике. Задача обеспечения устойчивости социотехнической системы на операциональном уровне сводится к установлению и определению следующих основных параметров ее функционирования и развития: • уровня социального и технического дискомфорта (комфорта) всех структурных элементов системы (континуум значений этих показателей находится в границах " норма — отклонение — напряжение — усталость — чрезвычайная ситуация"); • степени социальной и технической адаптации системы к отклонениям, усталости, чрезвычайным ситуациям (континуум значений данных показателей охватывает следующие границы риска: " надежно, стабильно, не очень надежно, с определенной степенью риска, малонадежно, рискованно, абсолютно ненадежно, катастрофично"); • " веса" каждого фактора риска для общей устойчивости системы (весомость определяется по шкале, охватывающей следующие границы изменения качественных показателей уровня: " максимально высокий — максимально низкий"); • амплитуды возможных, вероятных волнений системы под воздействием внутренних и внешних факторов (динамическая модель устойчивости определяется на основе " дерева социальных проблем" и гипотетической модели " возмущений" в чрезвычайных ситуациях). Основными критериями анализа и оценки устойчивости (надежности) социотехнической системы являются: определение идеальных параметров ее развития и функционирования (построение идеальной модели); определение допустимых параметров ее развития и функционирования (построение нормативной модели); определение меры соответствия реальных параметров функционирования социотехнической системы ее нормативным и идеальным значениям (моделям). Таким образом, актуальность разработки и применения социальных технологий на техногенных производствах состоит в возможности выработать правильную стратегию долгосрочного и ближайшего развития той или иной отрасли техногенного производства, прежде всего атомного, снизить количество ошибок и рисков, повысить социотехническую устойчивость объектов, обеспечить создание эффективной системы управления не только на конкретных предприятиях и в отрасли в целом, но и на уровне регионов. Это тем более актуально, что, по разным экспертным оценкам, опасность " техногенных взрывов" в общей структуре рисков и угроз национальной безопасности России составляет от 15 до 45%[41]. Все это позволит поднять на качественно иной уровень безопасность развития техногенного производства, напрямую скажется на укреплении общей национальной безопасности России в целом. Экспертная система мониторинга устойчивости и безопасности техногенных объектов предполагает создание организационных условий для непрерывного слежения, регулярного анализа и оценки информации о состоянии и изменениях социальной, социотехнической, морально-психологической, финансово-экономической, политической, информационной и прочей обстановки как внутри, так и вокруг объектов техногенного производства. Экспертные оценки осуществляются с помощью специальных процедур и методик, проходят необходимую ЭВМ-обработку и представляются с определенной периодичностью в органы управления. Система мониторинга устойчивости и безопасности функционирования, в частности, ядерно-опасных объектов преследует следующие цели: получить информацию о социальных детерминантах социо-технической устойчивости системы, состоянии сбалансированности (разбалансированности) социальных и технических подсистем, факторах риска, социальной усталости, состоянии трудовой и жизненной мотивации работников, стрессовых ожиданиях, эффективности принимаемых мер корректировки дисбалансов, векторов развития и существующих механизмов управления в экстремальных ситуациях; постоянно анализировать тенденции и динамику развития социально-экономической ситуации вокруг ядерно-опасного объекта и на территории, расположенной в непосредственной близости от его нахождения. В первую очередь необходимо отслеживать те явления и процессы, которые связаны с устойчивостью и безопасностью ядерного объекта и являются своеобразным социальным фоном, детерминирующим социально-психологическое состояние персонала, материальные и духовные основы его поведения и жизнедеятельности в целом; обладать источником информации, позволяющим на различных отрезках времени иметь сопоставимые и надежные сведения управленческого характера, получать комплексную и надлежащим образом научно обработанную информацию о ядерных объектах, о рисках и вызовах их безопасности, критических порогах их устойчивости, о причинах опасного дисбаланса социальных и технических систем, о результатах принятия управленческих решений. Экспертная система мониторинга может быть использована для решения следующих задач: а) оценки сложившейся обстановки на техногенных объектах и вокруг них с точки зрения их безопасного и устойчивого развития; б) прогнозирования экстремальных ситуаций, достигающих критических порогов устойчивости и безопасности их функционирования, а также ведущих тенденций развития напряжения, риска, угрозы; в) планирования социальных, экономических, технических и других профилактических мероприятий, направленных на снижение риска, угроз безопасности и устойчивости объекта; г) принятия управленческих решений на разных уровнях в сфере повышения сбалансированности социальных и технических подсистем, повышения общего уровня безопасности объекта, снятия социальных напряжений и конфликтов. Конкретизация этих положений позволяет сформулировать перечень основных вопросов и задач, которые решаются в процессе экспертного анализа: выделение наиболее значимых и актуальных с точки зрения безопасности и устойчивости проблемных ситуаций, характеризующих такие явления, как социальная усталость, социальная удовлетворенность, социальная ответственность, сплоченность коллектива, уровень профессионализма и качество подготовки управленческих кадров и др.; оценка и упорядочение по степени значимости этих проблемных ситуаций; определение приоритетных целей и задач управления в сфере повышения социотехнической устойчивости и безопасности объекта, упорядочение их по степени актуальности и важности; выявление различных вариантов и сценариев развития социальной и социотехнической ситуации на объекте и вокруг него, определение альтернативных вариантов разрешения возникающих проблем, рисков и угроз безопасности с оценкой их предпочтения. Конечно, невозможно заранее предопределить и зафиксировать перечень тех явлений и процессов, информация о которых в дальнейшем должна стать предметом анализа и оценки экспертов, занятых в системе мониторинга. Более того, подобный формализованный подход был бы не только нецелесообразным, но и ошибочным, если к тому же учесть, что в реальной действительности безопасность техногенного производства детерминируется бесконечно большим количеством чрезвычайно разнообразных социальных, технических и иных факторов. Однако наши исследования на ядерных объектах свидетельствуют, что такие социальные явления и процессы, которые в первую очередь определяют состояние социальной напряженности, и должны быть объектом мониторинговых исследований. К их числу относятся: социотехнические факторы: технические и социальные риски; уровень профессионально-технической подготовки; инновационные, технологии; уровень разбалансированности социального и технического векторов развития; социальные факторы: уровень социальной адаптации; морально-психологический климат; уровень социальной удовлетворенности различными сторонами жизни; уровень социальной напряженности в трудовом коллективе; уровень ответственности и духовного здоровья работников; жизненная и трудовая мотивация; психофизиологические факторы: уровень психического напряжения при исполнении служебных обязанностей; степень психической устойчивости работников к стрессовым ситуациям; возможности восстановления нервно-психических сил работников; физическое здоровье работников; социально-политические факторы: уровень социально-политической стабильности; степень политизированности работников: количество забастовок, митингов протеста населения в защиту своих политических и экономических прав; принятие на уровне региональной власти политических решений, способных привести к противостоянию как внутри, так и между регионом и центром и др.; уровень лоббирования интересов отрасли в органах государственной власти; социально-экономические факторы: финансовое положение предприятия; общая экономическая конъюнктура в регионе; задолженность предприятия предприятию; несоблюдение контрактных обязательств; уровень и структура инвестиций. Исходными понятиями, подлежащими операционализации в ходе мониторинга, являются: социотехническая система, социальные факторы, стрессовые ожидания, состояние сбалансированности социальных и технических подсистем, уровни разбалансированности последних (индикаторы измерения, показатели, нормативы), факторы риска и показатели приближающейся катастрофы (социальные, технические, социотехнические); факторы социального и технического риска, социальная усталость, социальная устойчивость, социальная патология, состояние трудовой и жизненной мотивации работников, инновационные технологии коррекции управления в экстремальных ситуациях; интересы, ценности, цели, мотивы сбалансированного поведения личности в сложных социотехнических системах; механизмы коррекции в условиях напряжения и опасности. Основные сферы изучения: профессионально-трудовая, интеллектуальная, социально-бытовая, личностно-мотивационная, духовно-культурная. Итоговые показатели, индикаторы: интенсивность процессов разрушения (социальных, технических); уровень разбалансированности социальных и технических структур; степень риска, грани социотехнической катастрофы; качество методов управления предотвращением риска, катастрофы; технология предотвращения аварии, катастрофы; уровень социальной усталости людей, характер жизненной и трудовой мотивации и поведения. В зависимости от типа программного обеспечения мониторинга анализ ситуации, сложившейся на ядерных объектах отрасли, может быть рассмотрен в " статике" или в " динамике". Статическая модель социотехнической устойчивости предполагает анализ и рассмотрение сложившейся ситуации на разных управленческих уровнях (на уровне атомной станции, на уровне региона, на уровне страны) с точки зрения отклонений качественно-количественных параметров модели, отображающей реальное состояние объекта, в отличие от нормативных значений, характеристик. Математическим обеспечением этой модели может выступить программа для обработки социологической и статистической информации, в частности 5Р55. Динамическая модель оценки надежности и безопасности объектов требует разработки программного обеспечения, которое было бы состыковано с информационными массивами и базами данных и позволило бы работать в диалоговом режиме. Создание экспертной оболочки позволит проигрывать разные ситуации, строить имитационные модели и определять допустимые степени разбалансированности тех или иных элементов и отношений социотехнических систем, связанных с возникновением чрезвычайных ситуаций, а также оценивать последствия разных управленческих решений. Динамическая модель безопасности и надежности атомных станций с соответствующей математической базой и программным обеспечением ориентирована прежде всего на определение степени риска (вероятностная оценка) нежелательных социальных, социотехнических процессов и явлений, наблюдаемых на разных уровнях, а также риска, связанного с принятием тех или иных управленческих решений. Моделирование чрезвычайных ситуаций и поведения системы в зависимости от изменения или коррекции качественного (количественного) состояния отдельных ее подсистем осуществляется путем поиска наиболее оптимальных альтернатив повышения общей устойчивости системы. Предварительное изучение информации о состоянии и функционировании ядерных объектов показало, что для целостной, комплексной оценки их надежности и безопасности целесообразно использовать методологию системного анализа, позволяющего выделить основные элементы изучаемого явления и выйти на параметры, характеризующие сильные и слабые стороны состояния надежности и безопасности, т.е. возможные " зоны риска". Системный подход целесообразно сочетать с экспертными оценками, массив которых формируется с помощью шкалы желательности или надежности. Модели надежности предприятий базируются на разработках профессора В.Б. Тихомирова[42], основанных на количественно-качественном анализе статистической и социологической (экспертной) информации с использованием следующих шкал (см. табл. 2). Таблица 2
|