![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Лабораторная работа № 3-1М интерференция света на двух щелях
Цель работы: наблюдение дифракции на одной щели и интерференции от двух щелей, измерение ширины щелей и расстояния между ними. Оборудование: Оптическая скамья, гелий-неоновый лазер ГН-3, дифракционный объект МОЛ-1, экран, видеокамера, компьютер.
Методика эксперимента.
Рассмотрим дифракцию плоской монохроматической волны от щели. Щелью будем называть прямоугольное отверстие, ширина которого во много раз меньше его длины. Обозначим ширину щели
Рис. 1.
Пусть световая волна длиной
Обратим внимание на то, что разность хода между лучами, идущими от краёв щели, зависит от синуса угла дифракции Тип дифракции, при котором рассматривается дифракционная картина, формируемая параллельными лучами, получил название дифракции в параллельных лучах или дифракции Фраунгофера. Расчёт даёт формулу распределения интенсивности света на экране Э в зависимости от угла дифракции
где
где
Эта формула – условие дифракционного минимума. Такая же формула условия минимума получается, если для расчёта амплитуды дифрагированных волн использовать метод полуволновых зон Френеля. Из формулы (2) следует, что интенсивность на экране равна нулю во всех случаях, когда разность хода между крайними лучами
где Направления, в которых возникают максимумы, определяются формулой:
Распределение интенсивности света в фокальной плоскости L представлено на рис. 2. Центральная светлая полоса - максимум нулевого порядка - занимает область между ближайшими правыми и левыми минимумами, т.е. область
Интенсивность света Рис. 2
Расчёты показывают, что интенсивности центрального и следующих максимумов относятся как 1: 0, 045: 0, 016 и т.д. Если используются две узкие щели, освещаемые параллельным пучком излучения лазера (плоской монохроматической волной), то вследствие дифракции пучки излучения после щелей получаются расходящимися, благодаря чему перекрываются и дают интерференционную картину. Рассмотрим интерференцию от двух параллельных щелей одинаковой ширины Рис. 3 Перемещение щели параллельно самой себе не приводит к изменению дифракционной картины, это значит, что положение дифракционных максимумов и минимумов от одной щели не зависит от её положения, а определяется только направлением дифрагированных лучей. Поэтому картины, создаваемые каждой щелью в отдельности, будут совершенно одинаковыми. Результирующую картину можно определить путем сложения этих двух картин с учётом интерференции волн, идущих от каждой из щелей. Очевидно, что в тех направлениях, в которых ни одна из щелей света не даёт света, не будет света и при двух параллельных щелях. Условие дифракционного минимума интенсивности
где Кроме того, возможны направления, в которых колебания, посылаемые двумя щелями, из-за интерференции взаимно уничтожаются. Возникают добавочные интерференционные минимумы. Они будут наблюдаться в тех направлениях, которым соответствует разность хода, удовлетворяющая условию интерференционного минимума
Разность хода между параллельными лучами, дифрагированными под углом
где
Соответственно есть направления, в которых действие одной щели из-за интерференции усиливает действие другой. Эти направления определяются условием интерференционного максимума где Таким образом, интенсивность на экране максимальна во всех случаях, когда разность хода между крайними лучами
где Кривая на рис. 3б показывает распределение интенсивностей света при дифракции на двух параллельных щелях. Из кривой видно, что по оси Расстояния между дифракционными минимумами согласно (2) зависит от ширины щели
Если ширина щели Измерив на опыте по дифракционной картине от одной узкой щели ширину центрального максимума и зная длину волны источника света, можно определить ширину щели. Схема наблюдения интерференции от двух щелей приведена на рис. 4.
Рис. 4. Схема наблюдения интерференции (без линзы):
По картине интерференции от двух параллельных узких щелей, зная длину волны источника и измерив, расстояние от центра интерференционной картины до первого главного минимума и первого главного максимума, можно определить ширину щелей и расстояние между ними. Значение соответствующего Установка для наблюдения интерференции собрана на оптической скамье (Рис. 5) и состоит из гелий-неонового лазера ЛГ-2 (1), дифракционного объекта МОЛ-1 (2), линзы с фокусным расстоянием
Рис. 5. Оптическая схема установки: 1 – лазер ГН-3; 2 - дифракционный объект МОЛ-1; 3 – линза с фокусным расстоянием F; 4 – экран.
|