Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Классификация с обучением и без обучения
В зависимости от наличия или отсутствия прецедентной информации различают задачи распознавания с обучением и без обучения. Задача распознавания на основе имеющегося множества прецедентов называется классификацией с обучением (или с учителем). В том случае, если имеется множество векторов признаков, полученных для некоторого набора образов, но правильная классификация этих образов неизвестна, возникает задача разделения этих образов на классы по сходству соответствующих векторов признаков. Эта задача называется кластеризацией или распознаванием без обучения. Пример 2. Рассмотрим съемку со спутника и классификацию поверхности по отраженной энергии (рис.3). На рисунке изображены снимок из космоса (слева) и результат кластеризации векторов признаков, рассчитанных для различных элементов изображения (справа). Распределение образов, изображенных точками (x1, x2) по классам осуществляется на основе анализа «скоплений» этих точек в пространстве признаков. Пример 3. Рассмотрим другой пример распознавания образов – в общественных (социальных) науках. Целью задачи является построение системы классификации государств для определения необходимости гуманитарной поддержки со стороны международных организаций. Необходимо выявить закономерности связей между различными, объективно измеряемыми параметрами, например, связь между ВНП, уровнем грамотности и уровнем детской смертности. В данном случае страны можно представить трехмерными векторами, а задача заключается в построении меры сходства этих векторов и дальнейшем построении схемы кластеризации (выбора групп) по этой мере. Еще одно важное понятие – метрика, способ определения расстояния между элементами универсального множества. Чем меньше это расстояние, тем более похожими являются объекты (символы, звуки и др.) – то, что мы распознаем. Обычно элементы задаются в виде набора чисел, а метрика – в виде функции. От выбора представления образов и реализации метрики зависит эффективность программы, один алгоритм распознавания с разными метриками будет ошибаться с разной частотой.
|