![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Электропроводность примесных полупроводников
Электропроводность примесного полупроводника называется примесной. Примеси могут весьма существенно влиять на электрические свойства полупроводников. Например, добавление в кремний бора в количестве одного атома на 105 атомов кремния увеличивает проводимость при комнатной температуре в 1000 раз. Небольшая добавка примеси к полупроводнику называется легированием. Удельная электропроводность примесных полупроводников так же, как и для собственных полупроводников, определяется концентрацией носителей заряда в зоне проводимости и их подвижностью Рассмотрим примесный полупроводник донорного типа. Пусть NД концентрация атомов донорной примеси, а Ed - энергия ионизации примеси, т.е. расстояние от уровня доноров до дна зоны проводимости (рис. 4). Для донорного полупроводника при низких температурах основным поставщиком электронов в зону проводимости являются донорные уровни примеси. За счет термического возбуждения электроны с донорных уровней примесных атомов переходят в зону проводимости. Концентрация электронов проводимости в донорном полупроводнике при низких температурах определяется выражением Прологарифмировав это выражение, получим Так же, как и в случае собственных полупроводников, функция ln n от 1/T в области низких температур представляет собой прямую, однако тангенс угла наклона будет теперь определяться не шириной запрещенной зоны, а энергией активации донорных примесей Ed. При дальнейшем повышении температуры концентрация электронов в зоне проводимости становится сравнимой с концентрацией примеси Nd. Дальнейшее увеличение концентрации электронов в зоне проводимости за счет перехода в нее электронов с донорных уровней примеси становится невозможным. Это явление называют истощением примеси, а температура, при которой наступает истощение примеси, называется температурой истощения примеси и обозначается обычно Ts. Температуру Ts можно получить из равенства n = Nd, в результате При очень высоких температурах поведение донорного полупроводника аналогично поведению собственного полупроводника, когда приток электронов в зону проводимости происходит за счет их перехода из валентной зоны, т.е. проводимость примесного полупроводника становится собственной (см. уравнение 4). Температура перехода к собственной проводимости Ti определяется из условия равенства концентраций носителей в собственном полупроводнике и электронов в донорном полупроводнике: Отсюда Температурная зависимость концентрации электронов проводимости в донорном полупроводнике представлена схематически на рис. 4. Участок а - б соответствует температурной области примесной проводимости. Тангенс угла наклона a определяется энергией активации донорных уровней
Можно показать, что для температурной зависимости концентрации дырок в акцепторном полупроводнике справедливы аналогичные результаты. В частности, концентрация дырок в валентной зоне где Na - концентрация акцепторных уровней; Ea - энергия активации акцепторных уровней. Как подчеркивалось выше, для невырожденного и вырожденного газа носителей в полупроводниках любого типа температурная зависимость подвижностей электронов и дырок значительно слабее, чем температурная зависимость их концентраций. По этой причине температурная зависимость удельной электропроводности примесного полупроводника на участках примесной и собственной проводимости, где концентрация свободных носителей заряда экспоненциально зависит от температуры, в основном определяется зависимостью от температуры концентрации носителей заряда. На этих участках вид зависимости ln s от 1/T не изменяется по сравнению с зависимостью ln n от 1/T. Практически не изменяются и угловые коэффициенты соответствующих зависимостей, определяемые энергиями активации примесных уровней и валентной зоны соответственно для примесной и собственной проводимости. Подвижность носителей существенное влияние оказывает на температурную зависимость электропроводности примесного полупроводника в области истощения примеси (участок б - в, рис. 4). В слаболегированных полупроводниках в области истощения примеси электропроводность даже уменьшается с ростом температуры, так как уменьшается подвижность носителей за счет механизма рассеяния их на фононах. Температурная зависимость логарифма удельной электропроводности от обратной температуры в зависимости от степени легирования схематически показана на рис. 5.
Кривые 1, 2, 3 последовательно представляют зависимости
|