![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Влияние соотношения активного и индуктивного сопротивлений
Значение Таблица 2.1 Соотношения активного и индуктивного сопротивлений линий электропередачи
Анализ данных табл. 2.1 позволяет установить закономерности изменения величины v и по отношению к значению v = 1 (r0 = x0) выделить три категории линий: 1) линии с v ³ 1, к которым прежде всего относятся кабельные линии 6 – 10 кВ, а также 35 кВ с алюминиевыми жилами и, кроме того, частично ВЛ 6 – 35 кВ и КЛ 35 кВ с медными жилами (при небольших сечениях); 2) линии с v» 1, к которым относятся ВЛ 6 – 35 кВ и КЛ 35 кВ с медными жилами (при больших сечениях) и частично ВЛ 110 кВ; 3) линии с v £ 1, к которым относятся все воздушные и кабельные линии с Uном ³ 110 кВ, за исключением отнесенных ко второй категории ВЛ 110 кВ. Начнем рассмотрение со второй категории линий, которые характеризуются равенством активного и индуктивного сопротивлений линии. При этом аргумент полного сопротивления линии близок к 450. Как изменится при этом векторная диаграмма напряжения (рис. 2.6, а), соответствующая режиму максимальной нагрузки линии? Чтобы ответить на этот вопрос, вновь вернемся к выражению (2.14а) для вектора падения напряжения и сгруппируем в нем попарно составляющие, определяемые активной и реактивной составляющими тока I1, 2, т.е.
Первые два слагаемые являются катетами треугольника, гипотенузой которого является вектор
Рис. 2.9. Векторные диаграммы токов и напряжений линии при rл = xл (а) и при rл = 0, 5хл (б)
Построим этот треугольник на векторной диаграмме (рис. 2.9, а), пометив его символом «Р». Последние два слагаемых в (2.17) являются катетами треугольника с гипотенузой В результате построения этих треугольников получаем вектор
и аналогично для линейных напряжений
Разность модулей векторов напряжений по концам линии, как мы уже отмечали ранее, называется потерей напряжения. Именно величина потери напряжения от шин источника питания до шин узла нагрузки в ряде случаев служит критерием допустимости рассматриваемого режима с позиции обеспечения качества электроэнергии, получаемой потребителем, и поэтому является важным качественным показателем работы сети. В рассматриваемом случае потеря напряжения
т.е. примерно равна продольной составляющей вектора падения напряжения. Нетрудно убедиться, что сказанное ранее тем более справедливо для линий первой категории, где rл ³ xл. Отсюда следует важное практическое обобщение: расчет напряжений в узлах электрических сетей с Uном £ 110 кВ допустимо выполнять без учета поперечной составляющей вектора падения напряжения, т.е. считая узловые напряжения вещественными числами и принимая потерю напряжения на каждом участке сети равной продольной составляющей вектора падения напряжения. Расчет установившегося режима сети при этом существенно упрощается, а возникающая погрешность, как правило, лежит в пределах точности задания исходных данных. Иная ситуация имеет место при рассмотрении линий третьей категории, для которых справедливо соотношение rл < xл. Соответствующая этому случаю векторная диаграмма приведена на рис. 2.9б. Из анализа диаграммы следует, что при rл < xл поперечная составляющая вектора падения напряжения и угол сдвига напряжений по концам линии или угол между При этом напряжение каждого узла характеризуется модулем и фазой, отсчитываемой от вектора напряжения узла, принятого за базовый.
|