Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Классификация ошибок измеренийСтр 1 из 2Следующая ⇒
ОСНОВЫ ТЕОРИИ ОШИБОК ИЗМЕРЕНИЙ Понятие об измерениях Измерение. это процесс сравнения измеряемой величины с величиной принятой за единицу сравнения, в результате которого получается именованное число, называемое результатом измерения. Различают: прямые или непосредственные и косвенные измерения. Непосредственными называют такие измерения, когда определяемые величины получают прямо из измерений, в результате непосредственного сравнения их с единицей измерений. Примеры непосредственных измерений – определение расстояний мерной лентой, измерение угла теодолитом. Косвенными являются такие измерения, при которых определяемые величины получают как функции непосредственно измеренных величин. Косвенный метод предполагает вычисление значения искомой величины. Например, превышение при тригонометрическом нивелировании являетсяфункцией расстояния и угла наклона, измеренных непосредственно на местности. Результаты измерений разделяют на равноточные и неравноточные. Равноточными называют результаты измерения однородных величин, полученные при многократных измерениях в сходных условиях (одним наблюдателем одним и тем же прибором, одним методом и при одних и тех же условиях окружающей среды). При нарушении даже одного из перечисленных условий результаты измерений относят к неравноточным. При математической обработке результатов топографо-геодезических измерений определенное значение имеют понятия о необходимом и избыточном числе измерений. В общем случае для решения любой топографической задачи необходимо измерить некоторое минимальное число величин, обеспечивающее решение задачи. Эти измерения называют числом необходимых измерений t. Разность k при вычитании числа необходимых измерений t из числа всех измеренных величин n, называют числом избыточных величин k = n. t. Избыточные измерения величины позволяют обнаружить ошибки в результатах измерений и вычислений и повысить точность определяемых величин.
Классификация ошибок измерений Результаты измерений отличаются от истинного значения измеряемой величины. Разность между результатом измерения l и истинным значением измеряемой величины х называется абсолютной ошибкой (погрешностью) результата измерения Δ. По характеру действия и свойствам ошибки подразделяются на: грубые, систематические и случайные. Грубые ошибки, или промахи происходят в результате невнимательности исполнителя работ. К грубым относятся ошибки, которые превышают допустимую величину. Для исключения грубых ошибок выполняются повторные измерения. Систематические ошибки возникают по определенным причинам и характеризуются постоянством своей величины и знака (+ или –). Делятся на постоянные (неизменные по знаку и величине) и переменные (изменяющие величину по определенному закону). Причинами их появления могут быть инструментальные ошибки (неточности в юстировке измерительных приборов, нарушение геометрических условий приборов и др.) и условия среды (изменение температуры прибора). Величина и знак систематических ошибок устанавливается путем компарирования прибора, т.е. сравнения показаний рабочего прибора с показаниями прибора, принятого в качестве эталона. Систематические ошибки должны быть обнаружены, изучены и исключены из результатов измерений путем введения поправок или использования соответствующей методики измерений. Под случайными понимаются ошибки, знак и размер которых не имеют закономерности своего появления, их возникновение не подчиняется определенным математическим законам, т.е. носят случайный характер. Они подчиняются статистическим закономерностям массовых случайных величин. Поэтому от случайных ошибок нет возможности полностью освободить результаты измерений.
|