Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод наименьших квадратов ⇐ ПредыдущаяСтр 5 из 5
Пусть переменная величина у, являющаяся функцией переменой величины х, измеряется при n различных значениях х, т.е. получают n экспериментальных точек: (х1, у1); (х2, у2); …(хn, уn). Будем считать, что зависимость у от х является функцией , вид которой зависит от параметров a1, a2, …, am. Величину этих параметров находят из условия минимума суммы квадратов: . Отсюда и название рассматриваемого метода. Из условия минимума S следует система уравнений (i=1, 2, …, m), (1.19) решая которую находят значения параметров . Будем считать, что зависимость между х и у является линейной: . Тогда . (1.20) Подставляя сумму квадратов S, определяемую формулой (1.20) в уравнения (1.19) и решая их, найдем такие значения А и В параметров и , при которых сумма (1.20) минимальна, т.е. минимальна сумма квадратов отклонений экспериментальных точек () от прямой линии . Получим формулы: ; ; (1.21) ; ; , где скобки означают среднее арифметическое величины х по всем n экспериментальным точкам (см. формулу 1.1). В формулах S(B) и S(A) - это выборочные оценки среднеквадратичных отклонений величин В и А. Отсюда полуширина доверительного интервала для вероятности Р выражается с помощью коэффициента Стьюдента: , где число степеней свободы (n - число экспериментальных точек). Если значения большие, то вычисления по формулам (1.21) требуют высокой точности. Для уменьшения ошибок вычислений можно начало координат по оси Х перенести в точку .
|