Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Включение в модель регрессии фактора времени ⇐ ПредыдущаяСтр 3 из 3
В корреляционно-регрессионном анализе устранить воздействие какого-либо фактора можно, если зафиксировать воздействие этого фактора на результат и другие включенные в модель факторы. Этот прием широко используется в анализе временных рядов, когда тенденция фиксируется через включение фактора времени в модель в качестве независимой переменной. Модель вида относится к группе моделей, включающих фактор времени. Очевидно, что число независимых переменных в такой модели может быть больше единицы. Кроме того, это могут быть не только текущие, но и лаговые значения независимой переменной, а также лаговые значения результативной переменной. Преимущество данной модели по сравнению с методами отклонений от трендов и последовательных разностей в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, поскольку значения у, и х, есть уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры а и b модели с включением фактора времени определяются обычным МНК. Расчет и интерпретацию параметров покажем на примере. Пример 6.3. Построение модели регрессии с включением фактора времени. Вернемся к данным предыдущих примеров. Построим уравнение регрессии, описывающее зависимость расходов на конечное потребление у, от совокупного дохода х, и фактора времени. Для расчета параметров уравнения регрессии воспользуемся обычным МНК. Система нормальных уравнений имеет вид: Подставив требуемые суммы, получим: Решая эту систему, получим уравнение регрессии . Коэффициент детерминации составит , что означает, что данное уравнение достаточно точно описывает реальный процесс. Найдём значение , то есть, корреляцию между признаками без учёта фактора времени, используя матрицу парных коэффициентов корреляции , получаем =0, 694398. Коэффициент детерминации равен Можно сделать вывод, что при использовании фактора времени уравнение достаточно точно описывает реальный процесс. Проведем сравнительный анализ полученных результатов. Метод отклонения от тренда дает коэффициент детерминации , метод последовательных разностей , при использовании фактора времени . Следовательно, в данном случае метод последовательных разностей показал самую слабую связь между временными рядами. Автокорреляция в остатках. Критерий Дарбина-Уотсона. Рассмотрим уравнения регрессии вида , где - число независимых переменных модели. Для каждого момента времени . Рассматривая последовательность остатков как временной ряд, можно построить их зависимость от времени. Если каждое следующее значение зависит от предыдущих то это указывает на наличие автокорреляции в остатках. Автокорреляция остатков может быть вызвана несколькими причинами, имеющими различную природу. Во первых, иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака. Во вторых, в ряде случаях причину автокорреляции остатков искать в формулировке модели. Модель может не включать фактор, оказывающий существенное влияние на результат, воздействие которого отражается в остатках. Существуют два наиболее распространенных метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – использование критерия Дарбина-Уотсона. И расчёт величины . Значение этого критерия табулировано. Покажем связь между коэффициентом автокорреляции остатков первого порядка, который определяется по формуле , где и . Так как остатки то можно предположить и . С учётом этих предположений . Преобразуем формулу для расчёта критерия Дарбина-Уотсона . Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то , следовательно . Если автокорреляция остатков отсутствует то и . Следовательно . Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной и отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона и для заданного числа наблюдений , числа переменных в модели и уровня значимости . По этим значениям разбивают числовой промежуток на пять отрезков. Принятие и отклонения каждой из гипотез рассматривается в таблице
Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределённости, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Пример. Проверка гипотезы о наличии автокорреляции в остатках.
Значение критерия Дарбина-Уотсона равно . Сформулируем гипотезы: - в остатках нет автокорреляции; - в остатках есть положительная автокорреляция; - в остатках отрицательная автокорреляция. Зададим уровень значимости . По таблицам значений критерия Дарбина-Уотсона определим для числа наблюдений и числа независимых переменных критические значения и . Так как расчётное значение критерия больше и меньше то есть попадаем в критическую область, следовательно есть незначительная положительная автокорреляция.
|