Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Включение в модель регрессии фактора времени






В корреляционно-регрессионном анализе устранить воздействие какого-либо фактора можно, если зафиксировать воздействие этого фактора на результат и другие включенные в модель факторы. Этот прием широко используется в анализе временных рядов, когда тенденция фиксируется через включение фактора времени в модель в качестве независимой переменной.

Модель вида относится к группе моделей, включающих фактор времени. Очевидно, что число независимых переменных в такой модели может быть больше единицы. Кроме того, это могут быть не только текущие, но и лаговые значения независимой переменной, а также лаговые значения результативной переменной.

Преимущество данной модели по сравнению с методами отклонений от трендов и последовательных разностей в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, поскольку значения у, и х, есть уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры а и b модели с включением фактора времени определяются обычным МНК. Расчет и интерпретацию параметров покажем на примере.

Пример 6.3. Построение модели регрессии с включением фактора времени.

Вернемся к данным предыдущих примеров. Построим уравнение регрессии, описывающее зависимость расходов на конечное потребление у, от совокупного дохода х, и фактора времени. Для расчета параметров уравнения регрессии воспользуемся обычным МНК. Система нормальных уравнений имеет вид:

Подставив требуемые суммы, получим:

Решая эту систему, получим уравнение регрессии . Коэффициент детерминации составит , что означает, что данное уравнение достаточно точно описывает реальный процесс. Найдём значение , то есть, корреляцию между признаками без учёта фактора времени, используя матрицу парных коэффициентов корреляции , получаем =0, 694398. Коэффициент детерминации равен Можно сделать вывод, что при использовании фактора времени уравнение достаточно точно описывает реальный процесс.

Проведем сравнительный анализ полученных результатов. Метод отклонения от тренда дает коэффициент детерминации , метод последовательных разностей , при использовании фактора времени . Следовательно, в данном случае метод последовательных разностей показал самую слабую связь между временными рядами.

Автокорреляция в остатках.

Критерий Дарбина-Уотсона.

Рассмотрим уравнения регрессии вида , где - число независимых переменных модели. Для каждого момента времени . Рассматривая последовательность остатков как временной ряд, можно построить их зависимость от времени. Если каждое следующее значение зависит от предыдущих то это указывает на наличие автокорреляции в остатках.

Автокорреляция остатков может быть вызвана несколькими причинами, имеющими различную природу. Во первых, иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака. Во вторых, в ряде случаях причину автокорреляции остатков искать в формулировке модели. Модель может не включать фактор, оказывающий существенное влияние на результат, воздействие которого отражается в остатках.

Существуют два наиболее распространенных метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – использование критерия Дарбина-Уотсона. И расчёт величины . Значение этого критерия табулировано. Покажем связь между коэффициентом автокорреляции остатков первого порядка, который определяется по формуле , где и . Так как остатки то можно предположить и . С учётом этих предположений . Преобразуем формулу для расчёта критерия Дарбина-Уотсона .

Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то , следовательно . Если автокорреляция остатков отсутствует то и . Следовательно . Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной и отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона и для заданного числа наблюдений , числа переменных в модели и уровня значимости . По этим значениям разбивают числовой промежуток на пять отрезков. Принятие и отклонения каждой из гипотез рассматривается в таблице

Есть положительная автокорреляция остатков. отклоняется, принимается . Зона неопределённости Нет оснований отклонять гипотезу . Автокорреляция остатков отсутствует. Зона неопределённости Есть отрицательная автокорреляция остатков. отклоняется, принимается .

Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределённости, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу

Пример. Проверка гипотезы о наличии автокорреляции в остатках.

    6, 425 -0, 425 0, 180625    
  4, 4 4, 225 0, 175 0, 030625 -0, 6 0, 36
    4, 975 0, 025 0, 000625 0, 15 0, 0225
    9, 075 -0, 075 0, 005625 0, 1 0, 01
  7, 2 7, 175 0, 025 0, 000625 -0, 1 0, 01
  4, 8 4, 975 -0, 175 0, 030625 0, 2 0, 04
    5, 725 0, 275 0, 075625 -0, 45 0, 2025
    9, 825 0, 175 0, 030625 0, 1 0, 01
    7, 925 0, 075 0, 005625 0, 1 0, 01
  5, 6 5, 725 -0, 125 0, 015625 0, 2 0, 04
  6, 4 6, 475 -0, 075 0, 005625 -0, 05 0, 0025
    10, 575 0, 425 0, 180625 -0, 5 0, 25
    8, 675 0, 325 0, 105625 0, 1 0, 01
  6, 6 6, 475 0, 125 0, 015625 0, 2 0, 04
    7, 225 -0, 225 0, 050625 0, 35 0, 1225
  10, 8 11, 325 -0, 525 0, 275625 0, 3 0, 09
      1, 01   1, 22

Значение критерия Дарбина-Уотсона равно .

Сформулируем гипотезы:

- в остатках нет автокорреляции;

- в остатках есть положительная автокорреляция;

- в остатках отрицательная автокорреляция.

Зададим уровень значимости . По таблицам значений критерия Дарбина-Уотсона определим для числа наблюдений и числа независимых переменных критические значения и . Так как расчётное значение критерия больше и меньше то есть попадаем в критическую область, следовательно есть незначительная положительная автокорреляция.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал