![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Магнитные моменты электронов и атомов
До сих пор мы рассматривали магнитное поле в вакууме. Если проводники с током находятся не в вакууме, а в какой-либо среде, то магнитное поле изменяется. Это показывает, что различные вещества в магнитном поле намагничиваются, т.е. сами становятся источниками магнитного поля. Результирующее магнитное поле в среде является суммой полей, создаваемых проводниками с током и намагниченной средой, и поэтому не равно полю в вакууме. Вещества, способные намагничиваться, называются магнетиками. Так как все вещества намагничиваются и изменяют магнитное поле в среде, то любое вещество в природе является магнетиком. Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Как показывает опыт, все вещества, помещенные в магнитное поле, намагничиваются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера, согласно которой в любом веществе существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут изменять свою ориентацию в магнитных полях макротоков. Например, если вблизи какого-то тела поместить проводник с током (макроток), то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле (веществе) дополнительное магнитное поле. Вектор магнитной индукции Магнитное поле макротоков описывается вектором напряженности
где m0 – магнитная постоянная, m - безразмерная величина – магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков Сравнивая векторные характеристики электростатического ( Электроны в атоме находятся в состоянии непрерывного движения. Для многих целей, в том числе и для объяснения магнитных явлений с достаточным приближением можно считать, что электроны движутся в атоме по круговым орбитам. Каждый из атомных электронов движется по своей собственной орбите, а разные электронные орбиты лежат в разных плоскостях. Такие электроны, обращающиеся по орбитам, представляют собой замкнутые электрические токи (молекулярные токи) являющиеся ответственными за намагничивание вещества. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладает орбитальным магнитным моментом (см. (21.2)) pm= IS = e nS, (33.2)
Если электрон движется по часовой стрелке (рисунок 42), то ток направлен против часовой стрелки и вектор Движущийся по орбите электрон обладает также механическим моментом импульса
L e = m v R = 2m v S, (33.3)
где v - скорость орбитального движения электрона (v = 2pnR), pR2 = S - площадь орбиты. Вектор Из рисунка 42 следует, что направления векторов
где величина g = -
называется гиромагнитным отношением орбитальных моментов (общепринято писать со знаком ² -², указывающим на то, что направления моментов противоположны). Это отношение, определяемое универсальными постоянными, одинаково для любой орбиты, хотя для разных орбит значения v и R различны. Формула (33.5) выведена для круговой орбиты, но она оказывается справедливой и для эллиптических орбит. Из соотношения (33.4) следует возможность наблюдения так называемого магнитомеханического явления: намагничивание вещества должно сопровождаться определенными механическими явлениями – появлением у намагничиваемого тела момента импульса. Магнитомеханическое явление впервые наблюдали Эйнштейн и де Гааз в 1915 г. В их опытах небольшой железный цилиндр был подвешен на тончайшей нити и помещен внутри соленоида. При намагничивании цилиндр начинал поворачиваться, причем направление вращения изменялось при изменении направления магнитного поля. Поворот цилиндра отмечался при помощи небольшого зеркальца, скрепленного с цилиндром. Эйнштейн и де Гааз наблюдали вынужденные крутильные колебания железного стержня во внешнем переменном магнитном поле, образованном при пропускании переменного тока по обмотке соленоида. Для усиления наблюдаемого эффекта они использовали явление механического резонанса: частоту крутильных колебаний цилиндрического стержня делали равной частоте переменного тока. При исследовании вынужденных крутильных колебаний стержня определялось гиромагнитное отношение, которое оказалось равным -(е /m). Таким образом, знак носителей, обусловливающих молекулярные токи, совпадал со знаком заряда электрона, а гиромагнитное отношение оказалось в два раза большим, чем введенная ранее величина g (см. (33.5)). Для объяснения этого результата, имевшего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орбитальных моментов (см. (33.2) и (33.3)) электрон обладает собственным механическим моментом импульса
где величина gs = -(е /m)называется гиромагнитным отношением спиновых моментов. Проекция собственного магнитного момента электрона на направление вектора
pm s B = ± где ħ = h /2p (h - постоянная Планка), mB - магнетон Бора, являющийся единицей магнитного момента электрона (mB = 9, 283× 10-24 А× м2). Магнитный и механический моменты электрона проявляются не только в магнитных свойствах вещества, но и в других многочисленных явлениях и, в частности, в особенностях оптических спектров. Поэтому существование этих свойств у электрона в настоящее время установлено с большой надежностью. В общем случае магнитный момент электрона складывается из орбитального и спинового магнитных моментов. Магнитный момент атома, следовательно, складывается из магнитных моментов входящих в его состав электронов и магнитного момента ядра (последний обусловлен магнитными моментами входящих в ядро протонов и нейтронов). Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают. Таким образом, общий магнитный момент атома (молекулы)
При рассмотрении магнитных моментов электронов и атомов мы пользовались классической теорией, не учитывая ограничений, накладываемых на движение электронов законами квантовой механики. Однако это не противоречит полученным результатам, так как для дальнейшего объяснения намагничивания веществ существенно лишь то, что атомы обладают магнитными моментами.
|