Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Плазма крови
Кислотно-основное равновесие в плазме крови человека в основном обеспечивается гидрокарбонатной, фосфатной, белковой и аминокислотной буферными системами. 1. Гидрокарбонатная буферная система. В плазме крови наиболее важной буферной системой в поддер-жании постоянства рН является гидрокарбонатная Н2СО3/НСО3-. Особенность этой буферной системы заключается в том, что один из ее компонентов - угольная кислота Н2СО3 - образуется при взаимо-действии растворенного в воде СО2 с водой: CO2(р-р) + H2O ⇄ Н2СО3 Концентрация растворенного СО2 определяется равновесием: CO2(р-р) ⇄ CO2(газ), которое описывается законом Генри:
где S - постоянная Генри [моль/(л∙ давление)]; P - парциальное давление CO2, [атм; Па; мм рт. ст.]. Таким образом, в плазме крови устанавливается равновесие: CO2 + H2O ⇄ Н2СО3 ⇄ H+ + НСО3- Диссоциация угольной кислоты по первой ступени описывается уравнением: В стандартных условиях , соответственно . Учитывая довольно низкую растворимость CO2 в воде [S = 0, 033 ммоль/(л∙ мм рт. ст.)], в физиологических условиях весь CO2, растворенный в плазме крови, рассматривают как гидратиро-ванный до Н2СО3, поэтому выражение для имеет вид: Отсюда . Так как концентрация Н2СО3 в гидрокарбонатной буферной си-стеме зависит от парциального давления СО2 в газовой фазе, значение рН гидрокарбонатного буфера в конечном счете определяется кон-центрацией ионов НСО3- в растворе и парциальным давлением СО2:
Гидрокарбонатная буферная система действует как эффективный физиологический буфер вблизи рН = 7, 4. В этих условиях отношение концентраций компонентов в гидрокарбонатной системе составляет: Таким образом, в плазме крови в норме отношение концентраций компонентов в системе сопряженного основания НСО3- и угольной кислоты Н2СО3 составляет примерно 20: 1. Вследствие того, что концентрация NaHCO3 в крови значительно превышает концен-трацию Н2СО3, буферная емкость этой системы по кислоте (40 ммоль/л плазмы крови) значительно выше, чем по щелочи (1-2 ммоль/л плазмы крови). В норме парциальное давление СО2 в крови составляет 5, 3 кПа (40 мм. рт. ст.) и содержание СО2 в плазме не достигает максималь-ной величины, определяемой растворимостью газа. Поэтому избыток СО2 в атмосфере приводит к дополнительному растворению СО2 в крови, что в соответствии с уравнением (11) может сопровождаться снижением рН крови и вызывать газовую форму ацидоза: Между СО2 в альвеолах и гидрокарбонатным буфером в плазме крови, протекающей через капилляры легких, устанавливается равновесие: При поступлении в кровь, протекающую через сосуды тканей, кислот - доноров Н+ - равновесие «3» в соответствии с принципом Ле Шателье смещается в сторону образования молекул Н2СО3. При этом концентрация Н2СО3 повышается, а концентрация ионов НСО3- соответственно понижается. В свою очередь, повышение концентра-ции Н2СО3 приводит к смещению равновесия «2» в сторону образования СО2 при разложении Н2СО3, т.е. к увеличению концен-трации растворенного в плазме СО2. В результате равновесие «1» смещается в сторону образования газообразного СО2, что приводит к повышению давления СО2 в легких и выведению последнего за счет изменения объема легочной вентиляции. При поступлении в кровь оснований - акцепторов Н+ - сдвиг рав-новесий происходит в обратной последовательности: равновесие «3» смещается в сторону усиления диссоциации Н2СО3, т.е. уменьшения ее концентрации, что в свою очередь смещает равновесие «2», а затем и равновесие «1» вправо и сопровождается растворением в плазме крови дополнительного количества СО2(газ), содержащегося в легких. В результате рассмотренных процессов гидрокарбонатная систе-ма крови быстро приходит в равновесие с СО2 в альвеолах и эффекти-вно обеспечивает поддержание постоянства рН плазмы крови. Гидрокарбонатная буферная система крови способна компенси-ровать и не только газовую, но и другие формы ацидоза, возникаю-щие в процессах жизнедеятельности организма. Так, избыток молоч-ной кислоты HLac, образующийся в результате интенсивной физичес-кой нагрузки, также нейтрализуется ионом НСО3-: HCO3- + HLac ⇄ Lac- + H2CO3 ⇄ H2O + CO2(p-p) ⇄ СО2(газ) Гидрокарбонатная буферная система, обеспечивая около 55% всей буферной емкости крови, является основной буферной системой плазмы крови и содержится также в эритроцитах, интерстициальной жидкости, почечной ткани. 2. Фосфатная буферная система. В поддержании постоянства рН плазмы принимает участие и фосфатная буферная система, состоящая из слабой кислоты Н2РО4- и сопряженного основания НРО42-. Фосфатная буферная система спо-собна поддерживать постоянство рН в интервале 6, 2-8, 2 и обеспечи-вает значительную долю буферной емкости крови. Для фосфатной буферной системы уравнение Гендерсона-Гассельбаха выглядит так: . Подставив физиологическое значение и значение рН крови в норме, равное 7, 4, получим: . Отсюда: Таким образом, соотношение концентраций Na2HPO4 и NaH2PO4 в фосфатной буферной системе крови приблизительно равно 4, поэтому фосфатная буферная система имеет более высокую емкость по кислоте, чем по щелочи и более эффективно нейтрализует кислые метаболиты плазмы крови, например молочную кислоту и продукты переработки мясной пищи: НРО42- + HLac ⇄ Н2РО4- + Lac- Образующееся в результате нейтрализации избыточное количест-во дигидрофосфат-иона H2PO4- выводится почками. Однако, в отличие от гидрокарбонатной буферной системы, различия буферной емкости фосфатной системы по кислоте и по щелочи не столь существенны. Эти величины составляют: = 1-2 ммоль/л, = 0, 5 ммоль/л. Фосфатная буферная система менее мощная, чем гидрокарбонат-ная, что объясняется малым содержанием фосфатов в плазме крови. Фосфатная буферная система содержится также в тканях, особенно в почках, и внутри клеток, например, в эритроцитах. 3. Белковая буферная система. Белковая буферная система представляет собой совокупность альбуминов и глобулинов - белков, составляющих основную часть плазмы крови (~90%). Изоэлектрические точки этих белков лежат в интервале значений рН = 4, 9-6, 3, т. е., в слабокислой среде. Поэтому в физиологических условиях (при рН = 7, 4) белки находятся преимущественно в формах «белок-основание» и соль «белка-основания». Соответствующее кислотно-основное равновесие: смещено в сторону преобладания формы «белок-основание». Буферная емкость, определяемая белками плазмы, зависит от концентрации белков, их вторичной и третичной структуры и числа свободных протонакцепторных групп. Эта система может нейтрали-зовать как кислые, так и основные продукты. Однако вследствие преобладания формы «белок-основание», ее буферная емкость значи-тельно выше по кислоте и составляет: для альбуминов = 10 ммоль/л, а для глобулинов = 3 ммоль/л. 4. Аминокислотная буферная система. Буферная емкость свободных аминокислот плазмы крови незначительна как по кислоте, так и по щелочи. Это связано с тем, что почти все аминокислоты имеют значения , заметно отличающиеся от 7, 4. Поэтому при физиологическом значении рН = 7, 4 их мощность мала. Практически только одна аминокислота - гистидин ( = 6, 0) - обладает значительным буферным действием при значениях рН, близких к рН плазмы крови. Таким образом, мощность буферных систем плазмы крови уменьшается в ряду: гидрокарбонатная > белковая > фосфатная > аминокислотная
|