![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Классификация магнетиков. Магнитные свойства атомов
Магнетики – так называются вещества в магнетизме. Это связано с тем, что все без исключения вещества в той или иной степени влияют на магнитное поле, ослабляя или усиливая его. На рис. 39 представлена схема опыта по изучению действия магнитного поля на различные вещества [7]. Сравнение показаний динамометра до и после включения постоянного тока в соленоиде указывает на три возможных типа взаимодействия. Первый тип взаимодействия: относительно слабое втягивание магнетика в область более сильного поля. Такие вещества называются парамагнетиками. К парамагнетикам относятся, например, алюминий, платина, натрий, хлористая медь, жидкий кислород и др.
Третий тип взаимодействия: для веществ этого класса наблюдалось втягивание в область более сильного поля, и их можно было бы, формально, отнести к первому типу взаимодействия. Однако эффект в тысячи, десятки тысяч раз превосходит силы, наблюдавшиеся для парамагнетиков и диамагнетиков. Эти вещества называются ферромагнетиками. К ним относятся, например, железо, кобальт, никель и др. Почему же вещества по-разному взаимодействуют с магнитным полем? Естественно предположить, что то или иное взаимодействие магнетиков с магнитным полем обусловлено магнитными свойствами атомов. Еще в начале XIX столетия Ампер выдвинул гипотезу молекулярных токов, согласно которой каждому атому (молекуле) можно сопоставить некоторый круговой ток с соответствующим магнитным моментом. В современной физике магнитный момент атома рассматривается как суммарный магнитный момент, связанный с орбитальным движением электронов вокруг ядра, собственным магнитным моментом электронов и с магнитным моментом ядра:
где Z – число электронов в атоме; Как показывает опыт, магнитный момент ядра мал по своей величине, и им можно пренебречь по сравнению с магнитными моментами электронов, считая, что магнитный момент атома равен векторной сумме орбитальных и собственных магнитных моментов электронов. Рассмотрим движение электрона по круговой орбите радиуса где
Направление тока I противоположно скорости электрона Здесь уместно ввести понятие гиромагнитного отношения
Момент импульса (момент количества движения) был определен в разделе «Механика» [6]:
где m – масса электрона. Вектор Как видно из (3.2)–(3.4), связь между векторами
где гиромагнитное отношение для орбитального движения электрона
Из (3.6) следует, что гиромагнитное отношение не зависит от параметров орбитального движения электрона и для всех электронов одинаково. Электрон обладает также собственным магнитным моментом
где В атоме (молекуле) векторная сумма орбитальных и собственных магнитных моментов электронов равна полному магнитному моменту атома (молекулы). Вследствие этого атомы (молекулы) можно рассматривать как микроскопические круговые контура с током, получившие в физике название молекулярных токов Ампера. Как показывает опыт, для парамагнетиков и ферромагнетиков суммарный магнитный момент атомов (молекул) отличен от нуля. Для диамагнетиков при отсутствии магнитного поля он равен нулю. Явления парамагнетизма, диамагнетизма и ферромагнетизма будут рассмотрены соответственно в подразд. 3.2, 3.3 и 3.5.
|