Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Бесконечно заряженная плоскость






 

Рассмотрим равномерно заряженную бесконечную плоскость с постоянной поверхностной плотностью заряда s:

- это заряд, распределенный по площади S.

Вектор электрического поля будет направлен нормально от плоскости, если s> 0.

Для определения модуля вектора напряженности, создаваемого пластиной, применим теорему Гаусса к замкнутой цилиндрической поверхности (рис. 1.5). Ось цилиндра перпендикулярна заряженной плоскости, и последняя делит высоту цилиндра пополам. Оба основания параллельны заряженной плоскости и имеют одинаковую площадь S.

Поток вектора напряженности через цилиндрическую поверхность равен:

 

(1.23)

 

На боковой поверхности вектор E параллелен поверхности и cosα = 0. На торцах цилиндра вектор E перпендикулярен поверхности и cosα = 1, а величина E одинакова на обоих основаниях; следовательно,

(1.24)

 

Проведенная цилиндрическая поверхность вырезает из плоскости такую же площадку S c полным зарядом:

 

(1.25)

Подставляя (1.24) и (1.25) в левую и правую части (1.21) получаем:

откуда

 

 

(1.26)


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.012 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал