Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Инфракрасное излучение
По физической природе инфракрасное излучение (ИФИ) представляет собой поток частичек материи, которые имеют волновые и квантовые свойства. ИФИ охватывает участок спектра с длиной волны от 760 нм до 540 мкм. Относительно человека источником излучения является всякое тело с температурой свыше 36-37°С, и чем больше разность, тем большая интенсивность облучения. Таблица 1 - Допустимая продолжительность действия на человека тепловой радиации
Группа А - излучение с длиной волны от 0, 76 до 1, 4 мкм, В - от 1, 4 до 3, 0 мкм и С - свыше 3, 0 мкм. Инфракрасное излучение группы А больше проникает через кожу и обозначается как коротковолновое инфракрасное излучение, а группы В и С - как длинноволновые. Длинноволновое инфракрасное излучение больше поглощается в эпидермисе, а видимые и более близкие инфракрасные излучения в основном поглощаются кровью в пластах дермы и подкожной жировой клетчатки. Влияние инфракрасного излучения на организм проявляется в основном тепловым действием. Эффект действия инфракрасных излучений зависит от длины волны, которая обуславливает глубину их проникновения. В связи с этим инфракрасное излучение делится на три группы (согласно классификации Международной комиссии по освещению): А, В и С. Пропуск, поглощение и рассеяние лучистой энергии зависят как от длины волны, так и от тканей организма. Влияние инфракрасных излучений при поглощении их в разных пластах кожи приводит к нагреванию ее, что обуславливает переполнение кровеносных сосудов кровью и усиление обмена веществ. Длинноволновые инфракрасные излучения поглощаются слезой и поверхностью роговицы и вызывают тепловое действие. Таким образом, инфракрасные излучения, действуя на глаз, могут вызвать ряд патологических изменений. К наиболее тяжелым повреждениям приводит коротковолновое инфракрасное излучение. При интенсивном действии этих излучений на незащищенную голову может произойти так называемый солнечный удар. Тепловой эффект действия излучения зависит от многих факторов: спектру, продолжительности и прерывистости излучения, интенсивности потока, угла падения лучей, величины поверхности, которая излучает, размеров участка организма, одежды и др. На непостоянных рабочих местах при стабильных источниках целесообразно замерять интенсивность излучения на разных расстояниях от источника излучения с одинаковыми интервалами и определять продолжительность облучения рабочих. Поскольку инфракрасное излучение нагревает окружающие поверхности, создавая вторичные источники, которые выделяют тепло, то необходимо измерять интенсивность излучение не только на постоянных рабочих местах или в рабочей зоне, но и в нейтральных точках и других местах помещения. Суммарная допустимая интенсивность излучение не должна превышать 350 Вт/м2. 3.1 Защита от инфракрасного излучения.
Для защиты от теплового излучения применяются средства коллективной и индивидуальной защиты.
Конструктивно теплоизоляция может быть: - мастичной; -оберточной; - засыпной; - из штучных изделий; -комбинированной.
Мастичную изоляцию осуществляют путем нанесения на поверхностьизолируемого объекта изоляционной мастики. Оберточная изоляция изготовляется из волокнистых материалов — асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна длятрубопроводов и сосудов. Засыпная изоляция (например, керамзит) в основном используется при прокладке трубопроводов в каналах и коробах. Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изоляционных работ.
- Непрозрачные экраны выполняются в виде каркаса с закрепленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием. В качестве отражающих материалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску. Для непрозрачных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты. Непрозрачные экраны могут быть теплоотражающими, теплопоглощающими и теплоотводящими. В теплоотражающих экранах используется алюминиевая фольга — альфоль в листовой или гофрированной форме. Теплопоглощающие экраны изготовляются из асбеста, металла, футерованного теплоизоляционным материалом - заслонки, щиты и др. Асбестовые экраны применяются при интенсивности потока до 3500 Вт/м2, футерованные - до 10000 Вт/м2. Теплоотводящие экраны представляют собой сварные или литые конструкции, охлаждаемые протекающей внутри водой. Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверхности экрана не более 30...35 °С.
Применяется теплозащитная одежда из хлопчатобумажных, льняных тканей, грубодисперсного сукна. Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани, на поверхности которых нанесен тонкий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повышенными теплозащитными свойствами (рисунок 3). Рисунок 3 - Костюм с повышенным теплозащитным свойством
|