Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Инфракрасное излучение






 

По физической природе инфракрасное излучение (ИФИ) представляет собой поток частичек материи, которые имеют волновые и квантовые свойства. ИФИ охватывает участок спектра с длиной волны от 760 нм до 540 мкм. Относительно человека источником излучения является всякое тело с температурой свыше 36-37°С, и чем больше разность, тем большая интенсивность облучения.

Таблица 1 - Допустимая продолжительность действия на человека тепловой радиации

 

Тепловое излучение, Вт/м2 Продолжительность действия, с
280-560 (слабая) 560-1050 (воздержанная) 1050-1600 (средняя) 1600-2100 (значительная) 2100-2800 (высокая) 2800-3500 (сильная) Свыше 3500 (очень сильная) Неопределенно длительное время 180-300 40-60 20-30 12-24 8-12 2-5

 

Группа А - излучение с длиной волны от 0, 76 до 1, 4 мкм, В - от 1, 4 до 3, 0 мкм и С - свыше 3, 0 мкм. Инфракрасное излучение группы А больше проникает через кожу и обозначается как коротковолновое инфракрасное излучение, а группы В и С - как длинноволновые. Длинноволновое инфракрасное излучение больше поглощается в эпидермисе, а видимые и более близкие инфракрасные излучения в основном поглощаются кровью в пластах дермы и подкожной жировой клетчатки.

Влияние инфракрасного излучения на организм проявляется в основном тепловым действием. Эффект действия инфракрасных излучений зависит от длины волны, которая обуславливает глубину их проникновения. В связи с этим инфракрасное излучение делится на три группы (согласно классификации Международной комиссии по освещению): А, В и С.

Пропуск, поглощение и рассеяние лучистой энергии зависят как от длины волны, так и от тканей организма. Влияние инфракрасных излучений при поглощении их в разных пластах кожи приводит к нагреванию ее, что обуславливает переполнение кровеносных сосудов кровью и усиление обмена веществ.

Длинноволновые инфракрасные излучения поглощаются слезой и поверхностью роговицы и вызывают тепловое действие. Таким образом, инфракрасные излучения, действуя на глаз, могут вызвать ряд патологических изменений.

К наиболее тяжелым повреждениям приводит коротковолновое инфракрасное излучение. При интенсивном действии этих излучений на незащищенную голову может произойти так называемый солнечный удар.

Тепловой эффект действия излучения зависит от многих факторов: спектру, продолжительности и прерывистости излучения, интенсивности потока, угла падения лучей, величины поверхности, которая излучает, размеров участка организма, одежды и др.

На непостоянных рабочих местах при стабильных источниках целесообразно замерять интенсивность излучения на разных расстояниях от источника излучения с одинаковыми интервалами и определять продолжительность облучения рабочих. Поскольку инфракрасное излучение нагревает окружающие поверхности, создавая вторичные источники, которые выделяют тепло, то необходимо измерять интенсивность излучение не только на постоянных рабочих местах или в рабочей зоне, но и в нейтральных точках и других местах помещения. Суммарная допустимая интенсивность излучение не должна превышать 350 Вт/м2.

3.1 Защита от инфракрасного излучения.

 

Для защиты от теплового излучения применяются средства кол­лективной и индивидуальной защиты.
Основными методами коллективной защиты являются: тепло­изоляция рабочих поверхностей источников излучения теплоты, эк­ранирование источников или рабочих мест, воздушное душирование рабочих мест, мелкодисперсное распыление воды с созданием водя­ных завес, общеобменная вентиляция, кондиционирование.
Средства защиты от теплового излучения должны обеспечивать: тепловую облученность на рабочих местах не более 0, 14 Вт/м2, темпе­ратуру поверхности оборудования не более 35 °С при температуре внутри источника теплоты до 100 °С и 45 °С при температуре внутри источника теплоты более 100°С.
Теплоизоляция горячих поверхностей(оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизо­ляции применяют материалы с низкойтеплопроводностью.

 

Конструктивно теплоизоляция может быть:

- мастичной;

-оберточ­ной;

- засыпной;

- из штучных изделий;

-комбинированной.

 

Мастичную изоляцию осуществляют путем нанесения на по­верхностьизолируемого объекта изоляционной мастики.

Оберточная изоляция изготовляется из волокнистых материа­лов — асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна длятрубопроводов и сосудов.

Засыпная изоляция (например, керамзит) в основном использу­ется при прокладке трубопроводов в каналах и коробах.

Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изоляци­онных работ.
Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие слои — из мастичных и оберточных материалов.
Теплозащитные экраныприменяют для экранирования источ­ников лучистой теплоты, защиты рабочего места и снижения темпе­ратуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энер­гию. Различают теплоотражающие, теплопоглощающие и теплоотво­дящие экраны.

 
 
Экраны


 

           
 
непрозрачные
 
прозрачные
   
полупрозрачные
 
 

 


- Непрозрачные экраны выполняются в виде каркаса с закреп­ленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием. В качестве отражающих мате­риалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску. Для непрозрач­ных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты.

Непрозрачные экраны могут быть теплоотражающими, теплопоглощающими и теплоотводящими. В теплоотражающих экранах используется алюминиевая фольга — альфоль в листовой или гофрированной форме. Теплопоглощающие экраны изготовляются из асбеста, металла, футерованного теплоизоляционным материалом - заслонки, щиты и др. Асбестовые экраны применяются при интенсивности потока до 3500 Вт/м2, футерованные - до 10000 Вт/м2. Теплоотводящие экраны представляют собой сварные или литые конструкции, охлаждаемые протекающей внутри водой.

Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверх­ности экрана не более 30...35 °С.
- Полупрозрачные экраны применяются в случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала.
В качестве полупрозрачных теплопоглощающих экранов ис­пользуют металлические сетки с размером ячейки 3...3, 5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие эк­раны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы.
- Прозрачные экраны изготовляют из бесцветных или окрашен­ных стекол — силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотво­дящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.
Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, соз­даваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов. Струя может подаваться сверху, снизу, сбоку и веером.


3.2 Средства индивидуальной защиты

Применяется теплозащит­ная одежда из хлопчатобумажных, льняных тканей, грубодисперсного сукна. Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани, на поверхности которых нанесен тон­кий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повышенными теплозащит­ными свойствами (рисунок 3).

Рисунок 3 - Костюм с повышенным теплозащит­ным свойством


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал