Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Решение ЗАДАЧИ 1. Часть 2.






Напомним, что

Дифференцируя частные производные еще раз, получим

Гессиан функции представляется матрицей

Рассмотрим первую точку экстремума . Для нее

Используем критерий Сильвестра.

, .

Следовательно, гессиан является положительно определенной матрицей, и точка является точкой локального минимума.

Теперь рассмотрим точку . Для нее получаем

Критерий Сильвестра дает

, .

Следовательно, точка не является ни точкой минимума, ни точкой максимума.

 

Задача 2.

Решение.

Имеем:

Из первого уравнения получаем

либо .

Из второго уравнения получаем

либо .

В результате получаем либо , , либо . В первом случае , во втором

ОТВЕТ. и достигается при .

 

Задача 3. Найти минимум функции

в области , , .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал