Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Комбинаторная мера
Оценивает возможность представления информации при помощи различных комбинаций информационных элементов в заданном объеме. Использует типы комбинаций элементов и соответствующие математические соотношения, которые приводятся в одном из разделов дискретной математики – комбинаторике. Комбинаторная мера может использоваться для оценки информационных возможностей некоторого автомата, который способен генерировать дискретные сигналы (сообщения) в соответствии с определенным правилом комбинаторики. Пусть, например, есть автомат, формирующий двузначные десятичные целые положительные числа (исходное множество информационных элементов {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). В соответствии с положениями комбинаторики, данный автомат генерирует размещения (различаются числа, например, 34 и 43) из 10 элементов (используются 10 цифр) по 2 (по условию задачи, формируются двузначные числа) с повторениями (очевидно, возможны числа, состоящие из одинаковых цифр, например, 33). Тогда можно оценить, сколько различных сообщений (двузначных чисел) может сформировать автомат, иначе говоря, можно оценить информационную емкость данного устройства: Рп (102) = 102 = 100. Комбинаторная мера используется для определения возможностей кодирующих систем, которые широко используются в информационной технике.
Пример 1. Определить емкость ASCII-кода, представленного в двоичной или шестнадцатеричной системе счисления. ASCII-код – это сообщение, которое формируется как размещение с повторениями: · для двоичного представления – из информационных элементов {0, 1}, сообщение длиной (объемом) 8 символов; · для шестнадцатеричного представления – из информационных элементов {0, 1, 2, …., А, В, С, …. F}, сообщение длиной (объемом) 2 символа. Тогда в соответствии с положениями комбинаторики: I (двоичное) = РП(28) = 28 = 256; I (шестнадцатеричное) = РП(162) = 162 = 256, где I (двоичное), I (шестнадцатеричное) – количества информации, соответственно, для двоичного и шестнадцатеричного представления ASCII-кода.
Таким образом, емкость ASCII-кода для двоичного и шестнадцатеричного представления одинакова и равна 256.
Следует отметить, что все коды постоянной длины формируются по правилам комбинаторики или их комбинациям. В случае, когда сообщения формируются как размещения с повторениями из элементов алфавита мощности h и известно количество сообщений М, можно определить требуемый объем сообщения (т.е. его длину l) для того, чтобы в этом объеме представить все сообщения: l = log h М. Например, есть 4 сообщения – a, b, c, d. Выполняется двоичное кодирование этих сообщений кодом постоянной длины. Для этого требуются 2 двоичных разряда. В самом деле: l = log 2 4 = 2.
Очевидно, комбинаторная мера является развитием геометрической меры, так как помимо длины сообщения учитывает объем исходного алфавита и правила, по которым из его символов строятся сообщения. Особенностью комбинаторной меры является то, что ею измеряется информация не конкретного сообщения, а всего множества сообщений, которые могут быть получены. Единицей измерения информации в комбинаторной мере является число комбинаций информационных элементов.
|