Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Регуляция процессов синтеза и распада гликогена.
Сопоставим эти процессы. Эти процессы различны. Это обстоятельство дает возможность раздельно регулировать синтез и распад гликогена. Регуляция осуществляется на уровне 2 ферментов: гликогенфосфорилазы и гликогенсинтетазы. Основным механизмом регуляции активности этих ферментов является их ковалентная модификация путем фосфорилирования - дефосфорилирования. Фосфорилированная фосфорилаза активна (отвечает за расщепление гликогена) ее называют фосфорилаза-А. В то время как фосфорилированная гликогенсинтетаза неактивна, (активная форма отвечает за синтез) а дефосфорилированные формы наоборот. Дефосфорилированная фосфорилаза неактивна - фосфорилаза-В. Если оба эти фермента находятся в фосфорилированной форме (фосфорилаза - активна), то в клетке идет расщепление гликогена с образованием глюкозы. В дефосфорилированном состоянии (дефосфорилированная гликогенсинтетаза - активна) наоборот идет синтез гликогена из глюкозы. Поскольку гликоген печени играет роль резерва глюкозы для всего организма, то его синтез и распад должен несомненно контролироваться надклеточными регуляторными механизмами, работа которых направлена на поддержание постоянной концентрации глюкозы в крови. Дело в том, что например падение содержания глюкозы в крови ниже 2, 2 млмоль/литр -тяжелейший гипогликемический шок, кома, смерть. Организм реагирует на снижение глюкозы крайне отрицательно. Эти механизмы гормональной регуляции должны обеспечивать исключение синтеза гликогена при повышенной концентрации глюкозы в крови и в то же время усиливать расщепление гликогена при падении концентрации глюкозы в крови.
РАСПАД ГЛИКОГЕНА В ПЕЧЕНИ Первичным сигналом стимулирующим мобилизацию гликогена в печени является снижение концентрации глюкозы в крови. Если вы хотели есть, но вас отвлекли как ребенка и ничего не давать, то дальше он уже не просит есть. Почему? 1 В ответ на это а-клетки островков Лангерганса панкреатической железы выбрасывают в кровь гормон ГЛЮКАГОН. 2 Глюкагон циркулирующий в крови взаимодействует со своим белком-рецептором находящимся на внешней стороне наружной клеточной мембраны и образует гормон-рецепторный комплекс. 3 Затем с помощью специального механизма после образования гормон-рецепторного комплекса происходит активация фермента аденилатциклазы. (G белки меняют свою конформацию и переводят в активную форму аденилатциклазу). 4 Активная форма начинает образовывать циклический АМФ из АТФ. 5 ЦАМФ способен активировать еще один фермент - протеинкиназа. Этот фермент состоит из 4 субъединиц: 2-х регуляторных и 2-х каталитических. Две молекулы ЦАМФ присоединяются к регуляторным субъединицам => происходит изменение конформации и высвобождаются каталитические субъединицы. 6 Каталитические субъединицы обеспечивают фосфорилирование ряда белков, в том числе ферментов. В частности они обеспечивают фосфорилирофание гликогенсинтетазы и это сопровождается блокированием синтеза гликоген. Кроме этого происходит фосфорилирование киназы-фосфорилазы, (слово киназа означает фосфорилирование) которая фосфорилирует гликогенфосфорилазу. Отсюда активация расщепления гликогена с выходом глюкозы в кровь. 7 Выброшенная глюкоза в кровь увеличивает концентрацию доводя ее до нормальных величин.
Стимуляция расщепления гликогена в печени происходит так же за счет выброса адреналина. 1 В качестве главных посредников здесь выступают Р рецепторы в гепатоцитах. Они связывают адреналин т.е. образуется гормоно-адреналиновый комплекс. 2 После образования гормоно-рецепторного комплекса происходит повышение содержания ионов Са в клетках. 3 Са стимулирует Са-зависимую киназу фосфорилазы. Которая в свою очередь активирует фосфорилазу путем ее фосфорилирования.
СТИМУЛЯЦИЯ СИНТЕЗА ГЛИКОГЕНА Студент получил стипендию и наелся. Съел много сладких вещей. В этом случае наблюдается повышение содержания глюкозы в крови. Что является внешним сигналом для гепатоцитов в отношении стимуляции синтеза гликогена и связывания таким образом лишней глюкозы из русла крови. Срабатывает следующий механизм. 1 При повышении концентрации глюкозы в крови путем пассивной диффузии повышается содержание глюкозы в гепатоцитах. Это повышение содержания глюкозы в крови очень сложным (в основном это аллостерическая модуляция) механизмом приводит к активации фосфопротеинфосфотазы. 2 Который вызывает дефосфорилирование гликогенсинтетаза, отщепляя от фосфорилирофанных форм фосфорилазы и гликогенсинтетазы фосфорную кислоту и поэтому 3 Дефосфорилированная гликогенсинтетаза превращается в активную форму, что резко стимулирует синтез гликогена. 4 Как только концентрация выравнивается глюкозы в крови так этот механизм выключается. В снижении фосфорилазной активности в гепатоцитах определенную роль играет инсулин. 1 Выделяется в ответ на повышение концентрации глюкозы в крови. Его связывание с инсулиновыми рецепторами приводит к активации в клетках печени фермента фосфодиастеразы. 2 Это фермент который расщепляет циклическую АМФ. А значит прерывающего активацию гликогенфосфорилазы. Как только мы съедаем много углеводов мы каждый раз своеобразно бьем кнутом по нашей панкреатической железе, заставляя, выбрасывать инсулин. Отсюда истощение инсулярного аппарата, который наблюдается у людей с неблагополучным статусом.
Регуляция содержания глюкозы в крови и метаболизма углеводов в организме.
Контроль метаболизма углеводов в организме человека осуществляется единой нейрогуморальной системой. Однако в ее работе можно выделить три группы механизма: 1. Контроль с помощью нервных механизмов. Возбуждение того или иного отдела ЦНС далее передача импульса по нервным стволам, далее выделение медиаторов и далее воздействие на обмен углеводов в клетке. 2. Контроль с помощью нейрогормональных механизмов. Возбуждение подкорковых метаболических центров, выделение гормонов гипоталамуса, выделение гормонов гипофиза, выделение гормонов периферических желез внутренней секреции и наконец воздействие гормонов на метаболизм углеводов в клетке. 3. Контроль с помощью метаболитно-гуморальных механизмов. Например повышение концентрации глюкозы в крови приводит к повышению продукции инсулина b клетками, а далее следует активация процессов усвоения глюкозы клетками. Одной из важнейших задач системы регуляции обмена углеводов является поддержание концентрации глюкозы в крови на определенном уровне (в пределах 3, 3-5, 5 млмоль/л). Эта концентрация обеспечивает нормальное снабжение клеток различных органов и тканей этим моносахаридом, который служит для них источником энергии и источником пластического материала. Постоянная концентрация глюкозы в крови - есть результат очень сложного баланса процессов поступления глюкозы в кровь и процессов ее утилизации в органах и тканях. Важную роль в поддержании концентрации глюкозы играет эндокринная система человека. Целый ряд гормонов повышает содержание глюкозы в крови: глюкагон, адреналин, соматотропин (СТГ), йодированные тиронины, глюкокортикоиды (кортизол).
Глюкагон повышает содержание глюкозы в крови за счет стимуляции процессов мобилизации гликогена в печени. Он стимулирует процесс глюконеогенеза, за счет повышения активности одного из фермента глюконеогенеза: фруктоза-1, 6-бисфосфотазу. Глюкагон выделяется a-клетками островков Лангерганса при снижении концентрации глюкозы в крови. Поскольку ответная реакция на повышение содержания глюкагона в крови базируется на изменении активности уже имеющихся в клетках ферментов, наблюдается быстрое повышение концентрации глюкозы в крови. Глюкагон не оказывает не оказывает влияние на скорость расщепления гликогена в мышцах, поскольку мышцы не имеют рецепторов к этому гормону.
Адреналин. Он секретируется в кровь мозговым вещ-вом надпочечников в экстремальных ситуациях. В первую очередь адреналин стимулирует расщепление гликогена в мышцах и таким образом обеспечивает миоциты энергетическим топливом. Однако в мышцах нет фермента глюкоза-6-фосфотазы, поэтому при расщеплении гликогена в мышцах свободной глюкозы образуется и она не поступает в кровь, т.е. за счет усиления скорости распада гликогена поддерживается энергетика самих мышц. В то же время адреналин способен ускорять расщепление гликогена в печени за счет активации фосфорилазы. Образующаяся глюкоза поступает из гепатоцитов в кровь, что приводит к повышению ее концентрации, поэтому все ситуации сопровождающиеся выбросом адреналина или введением адреналина естественно сопровождается повышением концентрации глюкозы в крови. Это повышение содержания глюкозы развивается очень быстро, поскольку как и в случае глюкагона обусловлено повышением активности имеющихся в гепатоцитах ферментов.
Кортизол. Как и другие глюкокортикоиды вызывает повышение содержания глюкозы в крови за счет 2 основных эффектов: Во-первых он тормозит поступление глюкозы из крови в клетки ряда перефирических тканей(мышечная соединительная) Во-вторых кортизол является основным стимулятором глюконеогенеза. Причем стимуляция глюконеогенеза является главным механизмом ответственным за увеличение концентрации глюкозы при выбросе кортизола или при его введении. Эффект кортизола развивается медленно содержание глюкозы в крови начинает повышаться через 4-6 часов после введения или выброса и достигает максимума примерно через сутки. Повышение содержания глюкозы в крови при действии кортизола сопровождается одновременно увеличением содержания гликогена в печени. В то же время при введении глюкагона содержание гликогена в печени снижается.
Соматотропный гормон гипофиза так же в целом вызывает повышение содержания глюкозы в крови. Но следует помнить, что введение этого гормона вызывает 2-х фазный ответ: 1 в течении первой четверти часа содержание глюкозы в крови снижается, 2 а затем развивается продолжительное повышение ее уровня в крови. Механизм этой ответной реакции окончательно не выяснен. Предполагают, что на первом этапе происходит небольшое нарастание содержание инсулина в крови. За счет чего и происходит снижение содержания глюкозы. В более отдаленные периоды повышение содержания глюкозы в крови является следствием нескольких эффектов. Во-первых это уменьшение поступления глюкозы в некоторые ткани (мышцы). Во-вторых повышение поступления в кровь глюкагона из поджелудочной железы. В-третьих уменьшение скорости окисления глюкозы в клетках в результате повышенного поступления в клетки жирных кислот (более высокое энергетическое топливо). Жир. кис. ингибируют пируваткиназу. Длительное введение соматотропного гормона приводит к развитию сахарного диабета.
Тироксин (Т4, тетрайодтиранин). Известно, что при гипертириозе окисление глюкозы идет с нормальной или повышенной скоростью. Содержание глюкозы натощак повышенно, одновременно у больных снижено содержание гликогена в печени.
Инсулин - гормон снижающий содержание глюкозы в крови. Выделяется в кровь b-клетками в ответ на повышение содержание глюкозы в крови. Снижение содержания глюкозы в крови обусловлено тремя группами эффектов: 1. Инсулин повышает проницаемость клеточных мембран для глюкозы за счет активации белка-переносчика и способствует переходу глюкозы из крови и межклеточной жидкости в клетки. 2. Инсулин улучшает усвоение глюкозы клетками а) стимулирует фосфорилирование глюкозы и ее окислительный распад б) ускоряет синтез гликогена в) превращение глюкозы в триглицериды 3. Тормозит процессы глюконеогенеза и расщепление гликогена в гепатоцитах до глюкозы.
Ответная реакция на введение или выброс инсулина развивается быстро. В физиологическом плане гормоны глюкагон и инсулин не являются антагонистами. Глюкагон обеспечивает перевод резервного гликогена в глюкозу, а инсулин обеспечивает поступление этой глюкозы из крови в клетки перефирических тканей и ее последующую утилизацию в клетках. Почему их нельзя считать антагонистами? В суммарном плане влияние на концентрацию глюкозы их можно назвать антагонистами один гипергликемический, другой гипогликемический, однако в физиологическом плане их нельзя назвать антагонистами, поскольку один за счет распада гликогена увеличивает концентрацию глюкозы, а второй (инсулин) обеспечивает проникновение этой глюкозы и ее последующую утилизацию.
Синтез гликозаминокликанов стимулируется тестостероном и соматотропным гормоном, причем под действием соматотропина в печени синтезируется пептид (инсулиноподобный фактор роста). Именно пептид является истинным стимулятором синтеза гетерополисахаридов межклеточного вещества соединительной ткани. Синтез гликозаминогликанов тормозят глюкокортикоиды. Замечено, что в местах инъекции кортизола количество межклеточного вещества в соединительной ткани уменьшается.
|