Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Мобилизация триглицеридов жировой ткани и проблемы транспорта высших жирных кислот.
Постадсорбционном периоде (когда между приемами пищи длительный интервал) идет мобилизация энергетических ресурсов организма в том числе мобилизация триглицеридов жировой ткани. Образующиеся в ходе мобилизации высшие жирные кислоты через мембрану липоцитов поступают в кровяное русло и в комплексе с альбуминами переносятся током крови в различные органы и ткани. Там жирные кислоты проникают через наружную клеточную мембрану внутрь клеток и связываются со специальным так называемым Z-белком. В комплексе с этим внутриклеточным переносчиком жирные кислоты перемещаются в цитозоле к месту их использования. Концентрация неэтерифицированных или иначе свободных жирных кислот в плазме крови натощак составляет величину 0, 56-0, 58 млмоль/л.
Жирные кислоты очень быстро обмениваются в крови, время их полужизни в русле крови составляет около 4 мин. За сутки с током крови переноситься примерно 150 гр свободных жирных кислот. Эта величина превышает величину суточного поступления липидов в организме. Это свидетельствует о том, что значительная часть транспортируемых кровью высших жирных кислот является продуктом их биосинтеза из углеводов или углеродного скелета аминокислот.
В условиях длительно интенсивной работы требующей больших энергозатрат жирные кислоты, поступающие из жировых депо становятся основным видом энергетического топлива. Значение их как энергетического топлива еще более возрастает при недостатке глюкозы в органах и тканях, что характерно для сахарного диабета или голодания. Однако на пути эффективного использования высших жирных кислот клетками встает так называемый диффузионный барьер. Что это за барьер? Суть этого явления заключается в том, что высшие жирные кислоты на своем пути из кровяного русла в клетки должны пройти через гидрофильную фазу межклеточной среды. Но они нерастворимы в воде и поэтому скорость движения через межклеточную среду крайне ограничена. Выходом из положения является преобразование жирных кислот в печени в соединения с небольшой молекулярной массой которые растворимы в воде. Это такие соединения как ацетоуксусные и b-гидроксимасляные кислоты. Эти соединения из печени опять же поступают в кровь, а затем идут в клетки тканей, но для этих молекул диффузионного барьера не существует, поэтому они служат эффективным энергетическим топливом. Эти соединения получили название - ацетоновые тела. К ацетоновым телам относится и сам ацетон (диметилкетон). В то же время в гепатоциты высшие жирные кислоты поступают минуя диффузионный барьер потому, что гпатоциты в печеночных синусах непосредственно контактируют с кровью. Биосинтез и распад ацетоновых тел. Жирные кислоты поступающие в гепатоциты, активируются и подвергаются b-окислению с образованием ацетилКоА. Именно этот ацетилКоА используется для синтеза ацетоновых тел, согласно схеме. В ходе первой реакции (в первую реакцию вступают 2 молекулы ацетилКоА, фермент ацетилКоА-ацетилтрансфераза = тиолаза) образуется 4-х углеродная молекула ацетоацетилКоА. Эти соединения макроэргические поэтому в этом синтезе не принимает участие АТФ. В ходе следующей реакции (фермент b-гидроксиb-метилглюкоилКоАсинтетаза) (в последующем вы увидите, что первые этапы биосинтеза ацетоновых тел и холестерина абсолютно равнозначны. Это одна из ключевых реакций синтеза ацетоновых тел) используется еще одна молекула ацетилКоА, вода. Образуется 6-и углеродная молекула - b-гидроксиb-метилглютарилКоА. Последняя реакция - лиазная (катализирует фермент ГМГ-лиаза), происходит отщепление ацетилКоА и образование 4-х углеродной молекулы - ацетоацетата. Как образуются два других соединения относящихся к группе ацетоновых тел? Из ацетоуксусной кислоты спонтанно, чаще всего, или иногда за счет декарбоксилазы происходит отщепление карбоксильной группы в виде углекислого газа и образуется ацетон. Ацетоуксусная кислота восстанавливается в ходе реакции катализируемой ферментом b-гидроксибутератдегидрогиназой с использованием НАД+Н+, в итоге образуется b-гидроксимасляная кислота. Это третий составной элемент ацетоновых тел. Образовавшиеся ацетоновые тела поступают из гепатоцитов в кровь и разносятся к клеткам. Процесс синтеза ацетоновых тел идет постоянно и ацетоновые тела всегда присутствуют в крови в концентрации 30мг/л. При голодании их содержание может увеличиваться до 400-500 мг/л. Еще больше концентрация при сахарном диабете в тяжелой форме до 3000-4000 мг/л. Ацетоновые тела в норме хорошо утилизируются клетками периферических тканей, в особенности это касается скелетных мышц и миокарда. Скелетные мышцы и миокард значительную часть нужной им энергии получают за счет окисления ацетоновых тел. Только нервные клетки в обычных условиях не утилизируют ацетоновые тела, однако при голодании даже головной мозг 50-75% соей потребности в энергии удовлетворяет за счет окисления ацетоновых тел. Ацетоацетат, поступающий в клетки различных тканей, прежде всего подвергается активации помощью одного из двух механизмов. Ацетоацетат с участием фермента тиокиназы, за счет энергии АТФ превращается в ацетоацетилКоА. Второй путь, является превалирующим в активации, это за счет фермента тиофоразы. Реакция, в которой принимают участие сукцениКоА и ацетоацетат, приводит к образованию ацетоацетилКоА и образование сукцината, который далее окисляется в цикле Кребса. Образующийся ацетоацетилКоА далее дает 2 молекулы ацетилКоА (принимает участие НSКоА, это тиолазная реакция) АцетилКоА поступает в цикл Кребса, где ацетильные остатки окисляются до углекислого газа и воды.
|