Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Контрольная работа 2. Формат А3. Выполнить три задачи на пересечение поверхности плоскостью и прямой. Пример выполнения листа - на рис. 7






 

Лист 7

 

Формат А3. Выполнить три задачи на пересечение поверхности плоскостью и прямой.Пример выполнения листа - на рис.7. Задачи 1 и 2 выполняют в левой части листа (одна под другой), а задачу 3— на правой части листа.

 

Задача 1. Д а н о: пирамида и прямая l. Т р е б у е т с я: определить точки пересечения прямой l с поверхностью трехгранной пирамиды. Все варианты задач имеют два одинаковых параметра: высоту пирамиды - 70 мм и диаметр вспомогательной окруж­ности - 60 мм, в которую вписывается треугольное основание произвольного распо­ложения по усмотрению студента. Положе­ние прямой общего положения, которая пересекает пирамиду, устанавливается сту­дентом также самостоятельно.

Указания к выполнению задачи 1. Чтобы решить за­дачу, необходимо: 1) заключить прямую во вспомогательную плоскость частного положения (фронтально-проецирующую или горизонтально-проецирующую); 2) построить линию пересечения пирамиды с этой вспомогательной плоскостью; 3) отметить точки пересечения проекций прямой с проекциями линии пересечения; 4) определить видимость.

Так как плоскость, в которую заключается прямая, частного положения, то одна из проекций фигуры сечения пирамиды совпадает с проекцией секущей плоскости, вы­родившейся в линию. Вторую проекцию сече-

ния достраивают по точкам фигуры сечения, которые лежат непосредственно на ребрах. Задача может иметь одно из трех решений: прямая пересекает пирамиду в двух точках, в одной точке (касается) и не пересекает поверхность.

 

Задача 2. Д а н о: основание конуса — окружность диаметром 60 мм, высота ко­нуса - 70 мм; прямая l. Т р е б у е т с я: определить точки пересечения прямой l с поверхностью прямого кругового кону­са. Положение прямой студент выбирает самостоятельно, учитывая характеристику прямой, указанную в табл.5.

Таблица 5

Номер варианта Характеристика прямой l
  Нисходящая общего положения
  Фронтальная под углом к П1 45°
  Горизонтально-проецирующая
  Горизонтальная под углом к П2 30°
  Фронтально-проецирующая
  Восходящая общего положения
  Горизонтальная под углом к П2 45°
  Фронтально-проецирующая

Указания к выполнению задачи 2. Чтобы решить за­дачу, необходимо выполнить действия, ана­логичные перечисленным в указаниях к за­даче 1. При этом следует напомнить, что выбирать нужно такие вспомогательно-се­кущие плоскости, которые дают наипростей­ший контур сечения конуса: окружность и треугольник. Так, например, для задачи 2, помещенной на рис.7, вспомогательная се­кущая плоскость является горизонтально-проецирующей. Такая плоскость дает сечение в виде треу­гольника. После определения точек пересечения пря­мой с конусом не забудьте установить ви­димые отрезки прямой.

 

Задача 3. Построить три проекции ли­нии пересечения сложной поверхности с фронтально-проецирующей плоскостью и способом совмещения (вращения вокруг ли­нии уровня) определить натуральную вели­чину этого сечения. Данные для вычерчи­вания комбинированной поверхности берут из табл. 6.

Указания к выполнению задачи 3. Задачу размеща­ют на правой стороне листа (см. рис.7).Высота всей комбинированной поверхности равна 100 мм, нижняя ее часть — 35 мм. Размеры диаметров оснований поверхностей и вспомогательных окружностей, а также стороны многоугольников приведены в табл. 6. Положение секущей плоскости для своего варианта берется из табл. 6. Задачу решают в два этапа: 1) строят проекции сечения; 2) определя­ют натуральную величину сечения указан­ным способом.

Так как в данном задании для пересе­чения предложена плоскость частного по­ложения: фронтально-проецирующая, то решение задачи сводится к построению проекций ряда точек фигуры сечения задан­ной поверхности как точек, расположенных на образующих или направляющих линиях этой поверхности. Первоначально крайние и промежуточные точки сечения назначают­ся на следе секущей плоскости. Натураль­ную величину сечения определяют по тем же точкам, которые были установленына первом этапе. За ось вращения плоскости сечения выбирают фронталь плоскости се­чения, совпадающую с его осью симмет­рии. Для того чтобы избежать наложения изображений, фронталь следует размещать на свободном поле чертежа параллельно следу секущей плоскости. Каждая точка сечения будет вращаться вокруг оси в пло­скости, перпендикулярной ей. Радиус вра­щения отображен в натуральную величину на горизонтальной плоскости проекций и соответствует расстоянию от точки до про­дольной оси симметрии (оси вращения).

 

Лист 8

Формат А3. Выполнить две задачи на пересече­ние многогранных и кривых поверхностей и построение разверток поверхностей. При­мер выполнения приведен на рис. 8.

 

Задача 1. Д а н о: многогранник и кри­вая поверхность. Т р е б у е т с я: способом вспомогательно-секущих плоскостей постро­ить линию пересечения многогранной и кри­вой поверхностей, выделив ее видимые и не­видимые участки. Данные для задачи бе­рут из табл. 7.

Указания к выполнению задачи 1. Задачу выполня­ют на левой половине листа в такой по­следовательности: 1) намечают расположе­ние вспомогательных секущих плоскостей частного положения (уровня) или проеци­рующих; 2) с их помощью определяют ха­рактерные и промежуточные точки линии пересечения поверхностей; 3) полученные точки соединяют плавными кривыми или прямыми линиями, установив предваритель­но последовательность расположения точек на линии пересечения поверхностей. Види­мую часть линий контура, в том числе и линии пересечения, обводят сплошной ос­новной, а невидимую—штриховой линия­ми. При решении задач на взаимное пере­сечение поверхностей следует помнить следующие положения.

1. Чтобы построить точку, принадлежа­щую линии пересечения поверхностей, нуж­но обе поверхности рассечь вспомогатель­ной плоскостью (иногда вспомогательной поверхностью) и, найдя линии пересечения вспомогательной плоскости с заданными по­верхностями, отметить общие для них точ­ки. Плоскость следует выбирать так, чтобы линии ее пересечения с поверхностями прое­цировались в простейшие фигуры (окруж­ности или прямые). Использование несколь­ких вспомогательных плоскостей позволяет определить ряд точек линий пересечения. Соединять можно только те точки, которые расположены в одной грани многогранника.

2. Когда боковая поверхность цилиндра или призмы занимает относительно плоско­сти проекций проецирующее положение (об­разующие поверхности перпендикулярны этой плоскости проекций), то одна проек­ция линии пересечения поверхностей ста­новится известной без дополнительных по­строений: она совпадает с проекцией по­верхности.

3. Если линия, принадлежащая поверх­ности, видна не полностью, то точки пере­хода от видимой части линии пересечения к невидимой располагаются на очерке по­верхности. Видимая часть линии пересече­ния поверхностей должна быть видимой как на одной поверхности, отдельно взя­той, так и на другой.

4. Чтобы найти верхнюю или нижнюю точку линии пересечения, соответствующей грани с конусом, нужно взять такую вспо­могательную плоскость, которая должна проходить через вершину конуса перпен­дикулярно

этой грани призмы. (Для пря­мой призмы - перпендикулярно ребрам основания.)

 

Задача 2. Д а н о: две пересекающиеся поверхности - многогранник и кривая по­верхность - и линия их пересечения. Т р е­ б у е т с я: построить полную развертку од­ной из пересекающихся поверхностей и на­нести на ней линию их пересечения. По­верхность для построения развертки студент выбирает сам из двух поверхностей зада­чи 1 в соответствии со своим вариантом. Линия пересечения поверхностей наносится по результату решения задачи 1.

Указания к выполнению задачи 2. Задачу выполняют на правой половине листа в такой последовательности: 1) в кривую поверхность впи­сывают многогранник; 2) определяют натуральные величины всех ребер вписанного многогранника; 3) на плоскости чертежа строят одну из граней поверхности по ее натуральным величинам ребер и к ней по­следовательно пристраивают остальные гра­ни, пользуясь смежными ребрами; 4) соот­ветствующие вершины граней соединяют плавными кривыми линиями.

При развертывании многогранной по­верхности выполняют только вторую и третью операции. Линия пересечения по­верхностей наносится на развертку с по­мощью ее характерных точек. Для каждой такой точки в ортогональных проекциях оп­ределяют положение образующей и направ­ляющей линий поверхности, на пересечении которых расположена взятая точка. Строят эти линии (образующую и направляющую) на развертке и в их пересечении отмечают искомую точку линии пересечения поверхностей (рис. 8).

Лист 9

 

Формат А 4. Выполнить задачу на построение линии пересечения поверхностей. Пример выполнения листа представлен на рис.9.

 

Задача 1. Д а н о: две пересекающиеся кривые поверхности. Т р е б у е т- с я: спосо­бом вспомогательных секущих плоскостей по­строить линию их пересечения, выделив ее видимые и невидимые участки. Данные ва­рианта задачи берут из табл.8.

Указания к выполнению задачи 1. Задачу выполняют в такой последова­тельности: 1) определяют точки пересечения очерковых образующих одной поверхности с другой, затем второй поверхности с пер­вой; 2) определяют наивысшие и наиниз­шие точки линии пересечения; 3) определя­ют промежуточные точки линии пересече­ния; 4) все найденные точки пересечения последовательно соединяют кривой линией, учитывая их видимость.

 

 

При выборе вспомогательных секущих плоскостей необходимо помнить, что они должны пересечь одновременно обе поверх­ности и дать наипростейшие фигуры сечения. Для всех вариантов заданий вспомогательными секущими плоскостями могут быть выбраны плоскости уровня: для одних - горизонтальные, для других - вертикальные или те и другие. Точками пересечения поверхностей являются точки пересечения контуров фигур сечения поверхностей, лежащих в одной и той же вспомогательной секущей плоскости. Каждая секущая плоскость может определить от одной до четырех точек линии пересечения в зависимости от характера пересекающихся поверхностей, их расположения относительно друг друга и положения самой секущей плоскости.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал