Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод построения нейросетевой модели маршрутизатора






Для построения нейронной сети Хопфилда как маршрутизатора информационных потоков в ТКС необходимо последовательно выполнить следующие шаги (этапы синтеза) [25, 30, 69]:

1) Определить функцию активации для нейронов;

2) Определить пространство входных данных для нейронной сети и пространство решений задачи маршрутизации;

3) Интерпретировать решение, т.е. привести решение, полученное нейронной сетью, к решению в терминах нейросетевой постановки задачи маршрутизации;

4) На объединении пространства входных данных и пространства решений задать энергетическую функцию нейронной сети вида.

, (10.3)

обладающую следующими свойствами:

а) Функция E является положительно определённой квадратичной формой,

b) Глобальный минимум функции E соответствует решению поставленной задачи.

5) В соответствии с энергетической функцией (11.3) построить модель нейронной сети.

Полученная нейронная сеть является модифицированной сетью Хопфилда. Она способна решить поставленную задачу многоадресной маршрутизации с определённой степенью точности. Точность решения определяется особенностями поставленной задачи и наличием локальных минимумов энергетической функции (10.3). Решением сети Хопфилда является совокупность выходных значений всех её нейронов.

В качестве функции активации i -го нейрона выберем нелинейную функцию вида

, (10.4)

где z – суммарный входной сигнал i-го нейрона, а λ i – некоторый положительный коэффициент, определяющий синаптический вес (параметр) i –го нейрона.

Важно отметить, что такая функция активации позволяет рассматривать динамику нейронной сети, т.е. описать её поведение во времени.

Пусть узлы графа ТКС проиндексированы, т.е. A ={ ai }, i =1,.., N, где N – число узлов в ТКС. В качестве пространства решений сети Хопфилда Y будем рассматривать следующее множество:

(10.5)

Таким образом, множество нейронов сети Хопфилда можно условно разбить на N подмножеств и организовать в виде квадратных матриц размерностью N´ N. Каждая такая матрица будет соответствовать некоторому узлу-получателю, а элементы матрицы – каналам связи между соответствующими узлами ТКС. На основе соотношения (10.5) можно построить интерпретатор решений нейронной сети [69].


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал