Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тригонометрические функции произвольного угла ⇐ ПредыдущаяСтр 3 из 3
Синусом угла a, образованного осью 0x и произвольным радиусом-вектором, называется отношение проекции этого вектора на ось 0y к его длине:
A
Рис. 6.
360°·n+a, где n=0; ±1; ±2; ±3; ±4; … и sin (a+360°· n)= sin a Длина радиуса-вектора всегда число положительное. Проекция его на координатные оси величины алгебраические и в зависимости от координатных четвертей имеют следующие знаки:
Во II четверти ax< 0; ay> 0; В III четверти ax< 0; ay < 0; В IV четверти ax> 0; ay< 0/ График функции y=sinx До сих пор аргументами тригонометрических функций рассматривались именованные величины – углы (дуги), измеренные в градусах или радианах. Значения тригонометрических функций, как отношения отрезков, являются абстрактными величинами (числами). При изучении свойств тригонометрических функций приходится сравнивать изменения функции в связи с изменениями аргумента, а сравнивать можно только однородные или, что еще лучше, абстрактные величины. Кроме того, введение тригонометрических функций от абстрактного аргумента дает возможность применять эти функции в различных вопросах математики, физики, техники и т.д.
sinx, где x – абстрактное число, равен sinx, где x измерен в радианах. Тригонометрические функции являются периодическими, то есть существует число а, отличное от 0, такое, что при любом целом nтождественно выполняется равенство: f(x+na)=f(x), n=0; ±1; ±2... Число а называется периодом функции. Период функции sinx равен 2p. Для нее имеет место формула: sin(x+2pn)= sinx, где n=0; ±1; ±2... График функции y=sinx называют синусоидой. Для построения графика можно взять значения аргумента x с определенным интервалом и составить таблицу значений y=sinx, соответствующих выбранным значениям x, а затем по точкам, как это часто делается в алгебре, построить график.
Рис.8. Некоторые свойства функции y=sinx 1. Непрерывность. Функция y=sinx существует при всех действительных значения x, причем, график ее является сплошной кривой линией (без разрывов), т.е. функция sinx непрерывна. 2. Четность, нечетность. Функция y=sinx нечетная и ее график симметричный относительно начала координат. 3. Наибольшие и наименьшие значения. Все возможные значения функции sinx ограничены неравенствами
причем sinx=+1, если
и sinx=-1, если 4. Нулевые значения (точки пересечения графика функции с осью абсцисс). sinx=0, если x=pn (n=0; ±1; ±2; …). 5. Интервалы возрастания и убывания. Функция возрастает, т.е. большему значению аргумента соответствует большее значение функции на интервалах
(n=0; ±1; ±2; …).
И убывает, т.е. большему значению аргумента соответствует меньшее значение функции на интервалах
(n=0; ±1; ±2; …).
|