Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Биоиндикация
Биоиндикация - это оценка состояния среды с помощью живых объектов. Живые объекты (или системы) - это клетки, организмы, популяции, сообщества. С их помощью может проводиться оценка как абиотических факторов (температура, влажность, кислотность, соленость, содержание поллютантов и т.д.), так и биотических (благополучие организмов, их популяций и сообществ). Термин «биоиндикация» чаще используется в европейской научной литературе, а в американской его обычно заменяют аналогичным по смыслу названием «экотоксикология». Биоиндикаторы (от греч. bios - жизнь и лат. indico - указываю, определяю) - организмы или сообщества организмов, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды обитания. Многие организмы весьма чувствительны и избирательны по отношению к различным факторам среды обитания (химическому составу почвы, вод, атмосферы, климатическим и погодным условиям, присутствию других организмов и т. п.) и могут существовать только в определенных, часто узких границах изменения этих факторов. Таким образом, их индикаторная значимость определяется экологической толерантностью биологической системы. В пределах зоны толерантности организм способен поддерживать свой гомеостаз. Любой фактор, если он выходит за пределы «зоны комфорта» для данного организма, является стрессовым. В этом случае организм реагирует ответной реакцией различной интенсивности и длительности, проявление которой зависит от вида и является показателем его индикаторной ценности. Именно ответную реакцию определяют методы биоиндикации. Развитие биоиндикации всегда определялось той или иной практической необходимостью. На первом этапе развития биоиндикации преобладало использование живых объектов как индикаторов естественных компонентов биогеоценозов.. Так, в начале ХХ в., когда переселенческим управлением, в особенности после столыпинской реформы 1906 г., было начато освоение новых земель в окраинных районах России, большое развитие получило исследование растительных индикаторов качества почвы (Чаянов, 1906). Новый подъѐ м биоиндикационных исследований наблюдался в 1950-1960 гг., он был вызван необходимостью поиска и освоения природных ресурсов (Викторов, 1955, Виноградов, 1964). Существенно изменился состав биоиндикационных исследований за последние десятилетия, что связано со сменой приоритетов. В это время сильно возросло антропогенное воздействие на экосистемы и своевременное обнаружение нарушений и загрязнений природной среды приобрело большее значение, чем открытие новых природных ресурсов. Поэтому первое актуальное направление современной биоиндикации – это контроль антропогенных нарушений и загрязнений природной среды (Вильямс, 1987). Кроме того, в это же время биоиндикация была вовлечена в теорию распознавания, дистанционную индикацию, математическое моделирование и т.п., и в их числе сформировалось второе актуальное направление современной биоиндикации – аэрокосмический биомониторинг (Виноградов, 1984). Однако с ухудшением экологических условий окружающей среды и возникновением проблемы охраны, все большее значение приобретают биоиндикационные исследования как природных, так и, главным образом, антропогенных загрязнений воды, воздуха, почвы, растительного покрова, животного населения (т.е. нарушенных биоценозов). Примерно с 1970 г. количество работ по биологическому контролю состояния окружающей среды и экосистем резко и неуклонно увеличивается. Возрастающее внимание к проблеме охраны природы обусловило необходимость проведения взаимосогласованных мероприятий по вопросам биоиндикации. В большинстве стран она осуществляется преимущественно по линии национальных академий наук и программ ООН (ЮНЕП, ФАО и др.). Плодотворным было сотрудничество экологов стран СЭВ в рамках " Экологической кооперации", в особенности по вопросам биотестирования качества вод. Большую работу по биоиндикации проводит Союз немецких инженеров. В настоящее время успешно развивается сотрудничество по линии международных союзов: экологов, охраны природы и особенно биологических наук (МБСН). На ХХI Общей ассамблее МБСН в Оттаве (1982) была выработана программа " Биоиндикаторы". Основные принципы программы: стандартизация методов исследований; решение региональных и национальных проблем; создание школ специалистов по биоиндикации; расширение биоиндикационных исследований в мониторинге окружающей среды. Программа МБСН " Биоиндикаторы" подразделяет биологические системы, применение которых возможно для выявления вредных антропогенных веществ, на 6 подгрупп в соответствии с 6-ю дисциплинами. 1. Микробиология. Микроорганизмы быстро обнаруживают загрязнения как воды, так и почвы. Существуют микроорганизмы, особо чувствительные к некоторым веществам, другие принимают участие в распаде загрязнителей. 2. Ботаника. Для обнаружения специфических загрязнителей воздушного бассейна и слежения за динамикой этого загрязнения возможно применение чувствительных видов растений. К их числу относятся низшие растения, лишайники, грибы, многие высшие растения. Толерантные или устойчивые индикаторные виды, а также их сообщества используются для характеристики почвенных условий, определения концентрации тяжелых металлов. 3. Зоология. Изучение отдельных видов (а также целых сообществ) животных может стать источником сведений, касающихся накопления химических веществ в их теле. Индикаторные виды могут быть использованы для определения токсичности продуктов питания людей. 4. Клеточная биология и генетика. Превосходными индикаторами являются клеточные и субклеточные (включая хромосомы) компоненты организма, адаптированные к определенным условиям. Уже имеются и еще будут выявлены многочисленные тестсистемы in vivo (в жизни) и in vitro (в пробирке) для кратковременного и долгосрочного слежения за изменениями природной среды. 5. Сравнительная физиология. Функциональные приспособления животных к изменениям окружающей среды могут быть исследованы на экологическом, биохимическом физиологическом и морфологическом уровнях и могут указывать на присутствие в ней загрязняющих веществ. 6. Гидробиология. Фауна и в особенности распределение видов, чувствительных к качеству воды, могут указывать на состояние водного бассейна. Необходимо подобрать соответствующие виды-индикаторы для конкретных токсикантов (тяжелые металлы, пестициды и др.). Преимущества живых индикаторов состоят в том, что они: суммируют все биологически важные данные об окружающей среде; отражают ее состояние в целом; устраняют трудную задачу применения дорогостоящих и трудоемких физических и химических методов для измерения биологических параметров; вскрывают скорость происходящих в природной среде изменений; указывают пути и места скопления в экологических системах различного рода загрязнений; позволяют судить о степени вредности тех или иных веществ для живой природы и человека; дают возможность контролировать действие многих, синтезируемых человеком соединений; помогают нормировать допустимую нагрузку на экосистемы. Биологическая система реагирует на воздействие среды в целом, а не только на отдельные факторы. По мнению Ван Штраалена (1998), существуют, по крайней мере, три случая, когда биоиндикация становится незаменимой. 1. Фактор не может быть измерен. Это особенно характерно для попыток реконструкции климата прошлых эпох. Так, анализ пыльцы растений в Северной Америке за длительный период показал смену теплого влажного климата сухим прохладным и далее замену лесных сообществ на травяные. В другом случае остатки диатомовых водорослей (соотношение ацидофильных и базофильных видов) позволили утверждать, что в прошлом вода в озерах Швеции имела кислую реакцию по вполне естественным причинам. 2. Фактор трудно измерить. Некоторые пестициды так быстро разлагаются, что не позволяют выявить их исходную концентрацию в почве. Например, инсектицид дельтаметрин активен лишь несколько часов после его распыления, в то время как его действие на фауну (жуков и пауков) прослеживается в течение нескольких недель. 3. Фактор легко измерить, но трудно интерпретировать. Данные о концентрации в окружающей среде различных поллютантов (если их концентрация не запредельно высока) не содержат ответа на вопрос, насколько ситуация опасна для живой природы. Показатели предельно допустимой концентрации (ПДК) различных веществ разработаны лишь для человека. Однако, очевидно, эти показатели не могут быть распространены на другие живые существа. Есть более чувствительные виды, и они могут оказаться ключевыми для поддержания экосистем. С точки зрения охраны природы, важнее получить ответ на вопрос, к каким последствиям приведет та или иная концентрация загрязнителя в среде. Эту задачу и решает биоиндикация, позволяя оценить биологические последствия антропогенного изменения среды. Физические и химические методы дают качественные и количественные характеристики фактора, но лишь косвенно судят о его биологическом действии. Биоиндикация, наоборот, позволяет получить информацию о биологических последствиях изменения среды и сделать лишь косвенные выводы об особенностях самого фактора. Биологические методы контроля качества среды не требуют предварительной идентификации химических соединений или физических воздействий, они достаточно просты в исполнении, экспрессны и дешевы. Вместе с тем после выявления общей токсичности образцов почвы или воды для определения ее причин следует применить аналитические методы. Таким образом, при оценке состояния среды желательно сочетать физико-химические методы с биологическими. Многолетний опыт ученых разных стран по контролю состояния ОС показал преимущества, которыми обладают живые индикаторы: в условиях хронических антропогенных нагрузок могут реагировать даже на относительно слабые воздействия вследствие кумулятивного эффекта; суммируют влияние всех без исключения биологически важных воздействий и отражают состояние ОС в целом, включая ее загрязнение; исключают необходимость регистрации химических и физических параметров, характеризующих состояние ОС; фиксируют скорость происходящих изменений; вскрывают тенденции развития природной среды; указывают пути и места скоплений загрязнений в экологических системах; позволяют судить о степени вредности любых синтетических веществ, в том числе и для самого человека. Актуальность биоиндикации обусловлена также простотой, скоростью и дешевизной определения качества среды. Например, при засолении почвы в городе листья липы по краям желтеют еще до наступления осени. Выявить такие участки можно, просто осматривая деревья. В таких случаях биоиндикация позволяет быстро обнаружить наиболее загрязненные местообитания. Наибольшую ценность представляют биоиндикаторы, присутствующие на объекте индикации в большом количестве и с высокой достоверностью, отличающиеся однородными свойствами, не требующие больших затрат для их выявления и получения достаточно точных и воспроизводимых результатов, имеющие диапазоны погрешности по сравнению с другими методами не более 20%.
|