![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Равносильные преобразования формул алгебры логики
Любую формулу алгебры логики можно преобразовать к равносильной ей, в которой используются только аксиоматически введенные операции: конъюнкция, дизъюнкция и отрицание. Преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.). Логические операции обладают рядом свойств и подчинены логическим законам (см. табл.3). Операции строгой дизъюнкции, импликации, эквиваленции, штрих Шеффера и стрелка Пирса могут быть равносильно выражены через операции конъюнкции, дизъюнкции и отрицания, поэтому они считаются как бы избыточными.
Логические равносильности алгебры логики:
Равносильное упрощение формул выполняется по шагам: 1. замена операций импликации, строгой дизъюнкции, эквиваленции, функции Шеффера и стрелки Пирса логическими равносильностями; 2. применение законов алгебры логики.
|