Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод половинного деления (метод дихотомии).
Считаем, что отделение корней уравнения (8.1) проведено и на отрезке [а, b] расположен один корень, который необходимо уточнить с допустимой погрешностью ε (рис. 8.1). Метод дихотомии, или половинного деления, заключается в следующем. Определяем середину отрезка [а, b] х = (а+b)/2 и вычисляем функцию f(x). Далее делаем выбор, какую из двух частей отрезка взять для дальнейшего уточнения корня. Если левая часть уравнения f(x) есть непрерывная функция аргумента х, то корень будет находиться в той половине отрезка, на концах которой f(x) имеет разные знаки. На рис. 8.1 это будет отрезок [а, х1] т.е. для очередного шага уточнения точку b перемещаем в середину отрезка х и продолжаем процесс деления как с первоначальным отрезком [а, b]. Рисунок 8.1 – Пояснение решению нелинейного уравнения методом половинного деления. Итерационный (повторяющийся) процесс будем продолжать до тех пор, пока интервал [а, b] не станет меньше заданной погрешности ε. Метод дихотомии позволяет значительно уменьшить объем вычислений К недостаткам метода половинного деления относится относительно медленная сходимость. Кроме того, если корней на отрезке [а, b] несколько, то неизвестно, к какому корню сойдется процесс. Достоинством метода половинного деления есть простота и надежность.
|