Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Методы анализа количественного влияния факторов на изменение результативного ⇐ ПредыдущаяСтр 5 из 5
показателя: Метод дифференциального исчисления, Индексный метод, Метод цепных подстановок, Метод простого добавления неразложимого остатка, Метод взвешенных конечных разностей, Логарифмический метод, Метод дробления прироста факторов, Интегральный метод 60. Метод дифференциального исчисления. Теоретической основой для количественной оценки роли отдельных факторов в динамике результативного (обобщающего) показателя является дифференцирование. В методе дифференциального исчисления предполагается, что общее приращение функций (результирующего показателя) различается на слагаемые, где значение каждого из них определяется как произведение соответствующей частной производной на приращение переменной, по которой вычислена данная производная. Т.к. этот метод дает однозначное разложение влияния факторов на изменение результирующего показателя, то это разложение может привести к значительным ошибкам в оценке влияния факторов, поскольку в ней не учитывается величина остаточного члена. Таким образом, в методе дифференциального исчисления так называемый неразложимый остаток, который интерпретируется как логическая ошибка метода дифференцирования, просто отбрасывается. В этом состоит «неудобство» дифференцирования для экономических расчетов, в которых, как правило, требуется точный баланс изменения результативного показателя и алгебраической суммы влияния всех факторов. 61. Индексный метод определения влияния факторов на обобщающий показателя. В статистике планировании и анализе хозяйственной деятельности основой для количественной оценки роли отдельных факторов в динамике изменений обобщающих показателей являются индексные модели. Если обобщающий экономический показатель представляет собой произведение количественного (объемного) и качественного показателей-факторов, то при определении влияния количественного фактора качественный показатель фиксируется на базисном уровне, а при определении влияния качественного фактора количественный показатель фиксируется на уровне отчетного периода. Индексный метод позволяет провести разложение по факторам не только относительных, но и абсолютных отклонений обобщающего показателя. Это отклонение образовалось под влиянием изменений численности работающих и производительности их труда. Чтобы определить, какая часть общего изменения объема выпуска продукции достигнута за счет изменения каждого из факторов в отдельности, необходимо при расчете влияния одного из них элиминировать влияние другого фактора. Изложенный принцип разложения абсолютного прироста (отклонения) обобщающего показателя по факторам пригоден для случая, когда число факторов равно двум (один из них количественный, другой качественный), а анализируемый показатель представлен как их произведение. Теория индексов не дает общего метода разложения абсолютных отклонений обобщающего показателя по факторам при числе факторов более двух. 62. Метод цепных подстановок. Этот метод заключается в получении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на фактические. Разность двух промежуточных значений обобщающего показателя в цепи подстановок равна изменению обобщающего показателя, вызванного изменением соответствующего фактора. В общем виде имеем следующую систему расчетов по методу цепных подстановок. Метод цепных подстановок, как и индексный, имеет недостатки, о которых следует знать при его применении. Во-первых, результаты расчетов зависят от последовательности замена факторов; во-вторых, активная роль в изменении обобщающего показателя необоснованно часто приписывается влиянию изменения качественного фактора. Задача точного определения роли каждого фактора в изменении обобщающего показателя обычным методом цепных подстановок не решается. В этой связи особую актуальность приобретает поиск путей совершенствования точного однозначного определения роли отдельных факторов в условиях внедрения в экономическом анализе сложных экономико-математических моделей факторных систем. Поиск путей совершенствования метода цепных подстановок (способа разниц) осуществлялся с двух позиций: экономическое обоснование определенной последовательности подстановок путем исследования сущности хозяйственных процессов и связей экономических факторов, при котором порядок расчетов определяется не.порядком расположения показателей в расчетной формуле, а их конкретным содержанием с выделением количественных и качественных факторов; нахождение рациональной вычислительной процедуры (метода факторного анализа), при которой устраняются условности и допущения и достигается получение однозначного результата величин влияния факторов. 63. Метод простого прибавления неразложимого остатка. Не находя достаточно полного обоснования, что делать с остатком, в практике экономического анализа стали использовать прием прибавки неразложимого остатка к качественному или количественному (основному или производному) фактору, а также делить этот остаток между двумя факторами поровну. Описанный метод хотя и снимает проблему «неразложимого остатка», но связан с условием определения количественных и качественных, факторов, что усложняет задачу при использовании больших факторных систем. Одновременно разложение общего прироста результативного показателя цепным методом зависит от последовательности подстановки. В этой связи получить однозначное количественное значение отдельных факторов без соблюдения дополнительных условий не представляется возможным. 64. Метод взвешенных конечных разностей. Этот метод состоит в том, что величина влияния каждого фактора определяется как по первому, так и по второму порядку подстановки, затем результат суммируется и от полученной суммы берется средняя величина, дающая единый ответ о значении влияния фактора. Если в расчете участвует больше факторов, то их значения рассчитываются по всем возможным подстановкам. метод взвешенных конечных разностей учитывает все варианты подстановок. Одновременно при усреднении нельзя получить однозначное количественное значение отдельных факторов. Этот метод весьма трудоемкий и по сравнению с предыдущим методом усложняет вычислительную процедуру, так как приходится перебирать все возможные варианты подстановок. В своей основе метод взбешенных конечных разностей идентичен (только для двухфакторной мультипликативной модели) методу простого прибавления неразложимого остатка при делении этого остатка между факторами поровну. С увеличением количества фактора, а значит, и количества подстановок, описанная идентичность методов не подтверждается. 65. Логарифмический метод. Этот метод состоит в том, что достигается логарифмически пропорциональное распределение остатка по двум искомым факторам. В этом случае не требуется установления очередности действия факторов. В более общем виде этот метод был описан еще А. Хумалом, который писал: «Такое разделение прироста произведения может быть названо нормальным. Название оправдывается тем, что полученное правило разделения остается в силе при любом числе сомножителей, а именно: прирост произведения разделяется между переменными сомножителями пропорционально логарифмам их коэффициентов изменения». Логарифмический метод в своей сути предусматривает получение логарифмических отношений, которые для расчленяющихся факторов будут примерно одинаковыми. Именно в этом и заключается недостаток описанного метода. Применение «смешанного» подхода в анализе кратных моделей факторных систем не решает проблемы получения изолированного значения из всего набора факторов, оказывающих влияние на изменение результативного показателя. Присутствие приближенных вычислений величин факторных изменений доказывает несовершенство логарифмического метода анализа.. 66. Метод дробления приращений факторов. В анализе хозяйственной деятельности наиболее распространенными являются задачи прямого детерминированного факторного анализа. С экономической точки зрения к таким задащм относится проведение анализа выполнения плана или динамики экономических показателей, при котором рассчитывается количественное значение факторов, оказавших влияние на изменение результативного показателя. С математической точки зрения задачи прямого детерминированного факторного анализа представляют исследование функции нескольких переменных. Дальнейшим развитием метода дифференциального исчисления явился метод дробления приращений факторных признаков» при котором следует вести дробление приращения Каждой из переменных на достаточно малые отрезки и осуществлять пересчет значений частных производных при каждом (уже достаточно малом) перемещении в пространстве; Степень дробления принимается/такой, чтобы суммарная ошибка не влияла на точность экономических расчетов. Метод дробления приращений факторных признаков имеет преимущества перед методом, цепных подстановок. Он позволяет определить однозначно величину влияния факторов при заранее заданной точности расчетов, не связан с последовательностью подстановок и выбором качественных и количественных показателей-факторов. Метод дробления требует соблюдения условий дифференцируемости функции в рассматриваемой области. 67. Интегральный метод оценки факторных влияний. Дальнейшим логическим развитием метода дробления приращений факторных признаков стал интегральный метод факторного анализа. Этот метод основывается на суммировании приращений функции, определенной как частная производная, умноженная на приращение аргумента на бесконечно малых промежутках. При этом должны соблюдаться следующие условия: 1) непрерывная дифференцируемость функции, где в качестве аргумента используется экономический показатель; 2) функция между начальной и конечной точками элементарного периода изменяется по прямой Г; 3) постоянство соотношения скоростей изменения факторов. В реальных экономических процессах изменение факторов в области определения функции может происходить не по прямолинейному отрезку Г, а по некоторой ориентированной кривой Г. Но так как изменение факторов рассматривается за элементарный период (т.е. за минимальный отрезок времени, в течение которого хотя бы один из факторов получит приращение), то траектория Г определяется единственно возможным способом— прямолинейным ориентированным отрезком Г, соединяющим начальную и конечную точки элементарного периода. Можно выделить два направления практического использования интегрального метода в решении задач факторного анализа. К первому направлению можно отнести задачи факторного анализа, когда не имеется данных об изменении факторов внутри анализируемого периода или от них можно абстрагироваться, т.е. имеет место случай, когда этот дериод следует рассматривать как элементарный. В этом случае расчеты следует вести по ориентированной прямой Г. Этот тип задач факторного анализа можно условно именовать статическим, так как при этом участвующие в анализе факторы характеризуются неизменностью положения по отношению к одному фактору, постоянством условий анализа измеряемых факторов независимо от нахождения их в модели факторной системы. Соизмерение приращений факторов происходит по отношению к одному выбранному для этой цели фактору. К статическим типам задач интегрального метода факторного анализа следует относить расчеты, связанные с анализом выполнения плана или динамики (если сравнение производится с предшествующим периодом) показателей.. Ко второму направлению можно отнести задачи факторного анализа, когда имеется информация об изменениях факторов внутри анализируемого периода и она должна приниматься во внимание, т.е. случай, когда этот период в соответствии с имеющимися данными разбивается на ряд элементарных. К динамическим типам задач интегрального метода факторного анализа, следует относить расчеты, связанные с анализом временных рядов экономических показателей. В этом случае можно подобрать, хотя и приближенно, уравнение, описывающее поведение анализируемых факторов во времени за весь рассматриваемый период. При этом в каждом разбиваемом элементарном периоде может быть принято индивидуальное значение, отличное от других. Интегральный метод факторного анализа находит применение в практике детермивировааного экономического анализа. Статический тип задач интегрального метода факторного анализа — наиболее разработанный и распространенный тип задач в детерминированном экономическом анализе хозяйственной деятельности управляемых объектов. В сравнении с другими методами рациональной вычислительной процедуры интегральный метод факторного анализа устранил неоднозначность оценки влиянии факторов и позволил получить наиболее точный результат. Результаты расчетов по интегральному методу существенно отличаются от того, что дает метод цепных подстановок или модификации последнего. Чем больше величина изменений факторов, тем разница значительнее.
|