Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнения прямой на плоскости. Уравнение прямой с угловым коэффициентом.






Уравнение прямой с угловым коэффициентом имеет вид , где k - угловой коэффициент прямой, b – некоторое действительное число. Уравнением прямой с угловым коэффициентом можно задать любую прямую, не параллельную оси Oy (для прямой параллельно оси ординат угловой коэффициент не определен).

Давайте разберемся со смыслом фразы: «прямая на плоскости в фиксированной системе координат задана уравнением с угловым коэффициентом вида ». Это означает, что уравнению удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точкек плоскости. Таким образом, если при подстановке координат точки в уравнение прямой с угловым коэффициентом получается верное равенство, то прямая проходит через эту точку. В противном случае точка не лежит на прямой.

30.Общее уравнение прямой.Частные случаи.

Мы видели, что уравнение прямой имеет вид (2), если прямая не параллельна оси Оу, или (6), если прямая параллельна оси ординат. Каждое из этих уравнений есть уравнение первой степени относительно текущих координат. Поэтому можно считать доказан­ной следующую теорему.

Теорема. Уравнение прямой линии в декартовой системе коорди­нат есть уравнение первой степени.

Покажем, что имеет место обратная теорема. Теорема. Любое уравнение первой степени относительно декарто­вых текущих координат есть уравнение прямой линии.

Доказательство. Пусть дано уравнение первой степени относительно декартовых координат:

Ах+Ву + С = 0. (7)

Возможны два случая.

В≠ 0. Тогда уравнение (7) равносильно уравнени ( Рассмотрим прямую, отсекающую на оси Оу отрезок b=

образующую с осью Ох такой угол а, для которого tga=-. Для

такой прямой уравнение (8) будет уравнением прямой с угловым коэффициентом. Это значит, что уравнение (8), а следовательно, и уравнение (7), является уравнением прямой.

1) Пусть теперь В — 0; тогда уравнение имеет вид

Ах + С = 0. (9)

При этом А Ф 0 (так как иначе мы имели бы не уравнение, а тож­дество С = 0). Поэтому уравнение (9) равносильно уравнению

Т- < 10>

Но это уравнение есть уравнение прямой, параллельной оси орди­нат и проходящей через точку -ji о)- Уравнение (9), равно­сильное (10), также является уравнением этой прямой. Итак, теорема доказана.

Определение. Уравнение вида (7) называется общим уравне­нием прямой в декартовой системе координат.

Замечание. В дальнейшем, если будет сказано «дана прямая», или «найти прямую», то это будет означать, что дано или что тре­буется найти ее уравнение. Рассмотрим некоторые частные случаи, когда один или несколько коэффициентов в общем уравнении прямой равны нулю.

1) В=0. Такой случай уже рассматривался. Уравнение прямой приводится к виду (10)

Если при этом СфО, то прямая параллельна оси ординат. Если же С — 0, то уравнение имеет вид

х = 0,

и прямая совпадает с осью ординат.

2) А — О. Уравнение прямой приводится к виду

Это есть уравнение прямой, параллельной оси абсцисс. В частности, при С =0, получаем уравнение оси абсцисс

< /= С.

3) С — 0. Уравнение прямой имеет вид

Ах+Ву = 0. (11)

Легко проверить, что уравнению (11) удовлетворяют координаты начала 0(0; 0). Следовательно, прямая в этом случае проходит через начало координат.



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал