Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Задание С6 № 315070 ⇐ ПредыдущаяСтр 5 из 5
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC.
Пусть площадь треугольника равна Медиана делит треугольник на два равновеликих треугольника, поэтому Биссектриса делит площадь треугольника пропорционально прилежащим сторонам, то есть:
Откуда Рассмотрим треугольник — биссектриса, следовательно:
Откуда Выразим площадь треугольника
Найдём отношение площади четрёхугольника к площади треугольника
Ответ: Ваша оценка (баллов):
Обсудить ВКонтакте Сообщить об ошибке
Конец формы
| |||||||||||
общее / предмет | © Гущин Д. Д., 2011—2015 |