![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Получение синусоидальной ЭДС. Основные соотношения
Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по синусоидальному закону, называются цепями синусоидального тока. Иногда их называют просто цепями переменного тока. Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по законам, отличным от синусоидального, называются цепями несинусоидального тока. Генераторы электрических станций переменного тока устроены так, что возникающая в их обмотках ЭДС изменяется по синусоидальному закону. Синусоидальная ЭДС в линейных цепях, где содержатся резистивные, индуктивные и емкостные элементы, возбуждает ток, изменяющийся по закону синуса. Возникающие при этом ЭДС самоиндукции в катушках и напряжения на конденсаторах, как это вытекает из выражений
также изменяются по синусоидальному закону, так как производная синусоидальной функции есть функция синусоидальная. Напряжение на резистивном элементе будет также изменяться по синусоидальному закону, так как и = ir. Целесообразность технического использования синусоидального тока обусловлена тем, что КПД генераторов, двигателей, трансформаторов и линий электропередачи при синусоидальной форме ЭДС, напряжения и тока получается наивысшим по сравнению с несинусоидальным током. Кроме того, при иных формах изменения тока из-за ЭДС самоиндукции могут возникать значительные перенапряжения на отдельных участках цепи. Важную роль играет и тот факт, что расчет цепей, где ЭДС, напряжение и ток изменяются синусоидально, значительно проще, чем расчет цепей, где указанные величины изменяются по несинусоидальному закону. Рассмотрим механизм возникновения и основные соотношения, характерные для синусоидальной ЭДС. Для этого удобно использовать простейшую модель — рамку, вращающуюся с постоянной угловой скоростью ω в равномерном магнитном поле (рис. 2.1, а). Проводники рамки, перемещаясь в магнитном поле, пересекают его, и в них на основании закона электромагнитной индукции наводится ЭДС. Значение ЭДС пропорционально магнитной индукции В, длине проводника l и скорости перемещения проводника относительно поля vt: е = Blvt. Выразив скорость vt через окружающую скорость v и угол α, получим е = Blv sin α = Еm sin α. Угол α равен произведению угловой скорости рамки ω на время t: α = ω t.. Таким образом, ЭДС, возникающая в рамке, будет равна е = Ет sin α = Em sin ω t. (2.1) Рис. 2.1. - Модель, поясняющая возникновение синусоидальной ЭДС (а); графики мгновенных значений ЭДС (б)
За один поворот рамки происходит полный цикл изменения ЭДС. Если при t = 0 ЭДС е не равна нулю, то выражение ЭДС записывается в виде е = Еm sin (ω t + ψ), где е - мгновенное значение ЭДС (значение ЭДС в момент времени t); Е т — амплитудное значение ЭДС (значение ЭДС в момент времени ω t + ψ = π /2), (ω t + ψ) - фаза; ψ - начальная фаза. Фаза определяет значение ЭДС в момент времени t, начальная фаза — при t = 0. Время одного цикла называется периодом T, а число периодов в секунду — частотой f: f = 1/T. Единицей измерения частоты является с-1, или герц (Гц). Величина ω = α /t = 2π /Т = 2π f в электротехнике называется угловой частотой и измеряется в рад/с. График зависимости ЭДС е от времени изображен на рис, 2.1, б (сплошная линия — для ψ = 0, пунктирная — для ψ ≠ 0). Частота вращения рамки n и частота ЭДС f связаны между собой coотношением ω = 2π f = π n/30, откуда f = n/60, Рис 2.2. Устройство синхронного генератора (а) и график распределения магнитной индукции под полюсом генератора (б) Синхронный генератор 1, устройство которого показано на рис. 2.2, а, состоит из неподвижного статора 1, в котором уложена обмотка 2, и вращающегося ротора 3, представляющего собой электромагнит. Магнитное поле вращающегося с постоянной частотой ротора пересекает проводники обмотки статора и наводит в них переменную ЭДС. Чтобы ЭДС при постоянной частоте вращения ротора изменялась синусоидально, воздушный зазор между полюсами ротора и поверхностью статора должен иметь такую форму, при которой магнитная индукция вдоль зазора изменялась бы по синусоидальной зависимости (рис. 2.2, б) Ba = Bm sin α, (2.2) Амплитудное значение ЭДС будет при α = 90°, когда ось ротора (а, а), где В = В т, совпадает с осью (б, б) проводника обмотки статора. Выбор частоты промышленных установок 50 Гц в СССР и странах Европы и 60Гц в США обусловлен технико-экономическими соображениями. При меньших частотах габаритные размеры, масса и стоимость трансформаторов и машин выше, заметно мигание света осветительных приборов и т. п. При больших частотах в трансформаторах и машинах увеличиваются потери энергии, повышается падение напряжения в проводах вследствие возрастания индуктивного сопротивления и т. п. Для питания энергией высокоскоростных асинхронных двигателей при частотах до 500Гц используют многополюсные синхронные или индукторные генераторы, для нагревательных установок и высокоскоростных асинхронных двигателей при частотах до 8000 Гц — специальные индукторные генераторы. Переменный ток высокий частоты (от тысяч до нескольких сотен миллионов герц) для радиотехнических и других установок получают с помощью ламповых или полупроводниковых генераторов. Принцип действия генераторов основан на возникновении синусоидальных колебаний в контуре с емкостью и индуктивностью. Целесообразность применения энергии переменного тока вместо постоянного тока обусловлена многими технико-экономическими причинами. Приведем некоторые из них. Источники энергии переменного тока — синхронные генераторы — дешевле, надежней и могут быть выполнены на значительно большие мощности и более высокие напряжения, чем генераторы постоянного тока. Энергия переменного тока одного напряжения легко преобразуется в энергию переменного тока другого (высшего или низшего) напряжения с помощью относительно простого, дешевого и надежного аппарата — трансформатора, что очень важно при передаче энергии на большие расстояния. Приемники электрической энергии, такие как осветительные приборы и электрические печи, в которых используются проволочные нагреватели постоянного и переменного тока, мало различаются по своим технико-экономическим показателям, однако двигатели переменного тока дешевле и надежней двигателей постоянного тока. Следует отметить также широкое применение нагревательных устройств для плавления металлов, поверхностной закалки и т. п., принцип действия которых основан на использовании переменного тока.
|