Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Законы алгебры множеств






Контрольная работа

по дисциплине «Основы математической обработки информации»

Для студентов 2 курса

Направление Педагогическое образование

 

Методические указания к решению задач

Основные понятия теории множеств

Определить и изобразить на рисунках множества A, B, A È B, A Ç B, A / B, B / A, A D B, где

A = {(x, y) Î R 2: | x | £ 1, | y | £ 1},

B = {(x, y) Î R 2: | x – 1| £ 1, | y – 1| £ 1}.

Решение: Множества A и B представляют собой множества точек на декартовой плоскости R ´ R = R 2 (плоскости Oxy). Как нетрудно установить, множество A представляет собой внутренность квадрата с центром в точке (0; 0) со сторонами длиной 2, параллельными координатным осям; граница принадлежит множеству A. Аналогично, множество B представляет собой внутренность квадрата с центром в точке (1; 1) со сторонами длиной 2, параллельными координатным осям; граница принадлежит множеству B. Множества A, B, A È B, A Ç B, A / B, B / A, A D B изображены на рис. 1.

 

Законы алгебры множеств

Пусть A, B, C – подмножества некоторого универсального множества U. Установите справедливость нижеследующего утверждения:

(A \ B)È (B \ A) = (A È B)\(A Ç B).

Решение: Разложим множества A и B на непересекающиеся подмножества { xA }, { xB }, { xAB }:

A = { xA È xAB };

B = { xB È xAB }.

В этих обозначениях для левой части предполагаемого равенства имеем:

A \ B = { xA È xAB }\{ xB È xAB } = { xA };

B \ A = { xB È xAB }\{ xA È xAB } = { xB };

(A \ B)È (B \ A) = { xA }È { xB } = { xA È xB }.

Для правой части равенства имеем:

A È B = { xA È xAB }È { xB È xAB } = { xA È xB È xAB };

A Ç B = { xA È xAB }Ç { xB È xAB } = { xAB };

(A È B)\(A Ç B) = { xA È xB È xAB }\{ xAB } = { xA È xB }.

Левая и правая части доказываемого равенства одинаковы и равны { xA È xB }. Справедливость утверждения установлена.

 


 

  Рис. 1

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал